Add Bucket Sort.

This commit is contained in:
Oleksii Trekhleb 2023-03-13 14:12:43 +01:00
parent e95d856e67
commit 1ad60dc510
8 changed files with 134 additions and 19 deletions

View File

@ -133,6 +133,7 @@ a set of rules that precisely define a sequence of operations.
* `B` [Shellsort](src/algorithms/sorting/shell-sort)
* `B` [Counting Sort](src/algorithms/sorting/counting-sort)
* `B` [Radix Sort](src/algorithms/sorting/radix-sort)
* `B` [Bucket Sort](src/algorithms/sorting/bucket-sort)
* **Linked Lists**
* `B` [Straight Traversal](src/algorithms/linked-list/traversal)
* `B` [Reverse Traversal](src/algorithms/linked-list/reverse-traversal)

View File

@ -0,0 +1,46 @@
import RadixSort from '../radix-sort/RadixSort';
/**
* Bucket Sort
*
* @param {number[]} arr
* @param {number} bucketsNum
* @return {number[]}
*/
export default function BucketSort(arr, bucketsNum = 1) {
const buckets = new Array(bucketsNum).fill(null).map(() => []);
const minValue = Math.min(...arr);
const maxValue = Math.max(...arr);
const bucketSize = Math.ceil(Math.max(1, (maxValue - minValue) / bucketsNum));
// Place elements into buckets.
for (let i = 0; i < arr.length; i += 1) {
const currValue = arr[i];
const bucketIndex = Math.floor((currValue - minValue) / bucketSize);
// Edge case for max value.
if (bucketIndex === bucketsNum) {
buckets[bucketsNum - 1].push(currValue);
} else {
buckets[bucketIndex].push(currValue);
}
}
// Sort individual buckets.
for (let i = 0; i < buckets.length; i += 1) {
// Let's use the Radix Sorter here. This may give us
// the average O(n + k) time complexity to sort one bucket
// (where k is a number of digits in the longest number).
buckets[i] = new RadixSort().sort(buckets[i]);
}
// Merge sorted buckets into final output.
const sortedArr = [];
for (let i = 0; i < buckets.length; i += 1) {
sortedArr.push(...buckets[i]);
}
return sortedArr;
}

View File

@ -0,0 +1,35 @@
# Bucket Sort
**Bucket sort**, or **bin sort**, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm.
## Algorithm
Bucket sort works as follows:
1. Set up an array of initially empty `buckets`.
2. **Scatter:** Go over the original array, putting each object in its `bucket`.
3. Sort each non-empty `bucket`.
4. **Gather:** Visit the `buckets` in order and put all elements back into the original array.
Elements are distributed among bins:
![Elements are distributed among bins](./images/bucket_sort_1.png)
Then, elements are sorted within each bin:
![Elements are sorted within each bin](./images/bucket_sort_2.png)
## Complexity
The computational complexity depends on the algorithm used to sort each bucket, the number of buckets to use, and whether the input is uniformly distributed.
The **worst-case** time complexity of bucket sort is
`O(n^2)` if the sorting algorithm used on the bucket is *insertion sort*, which is the most common use case since the expectation is that buckets will not have too many elements relative to the entire list. In the worst case, all elements are placed in one bucket, causing the running time to reduce to the worst-case complexity of insertion sort (all elements are in reverse order). If the worst-case running time of the intermediate sort used is `O(n * log(n))`, then the worst-case running time of bucket sort will also be
`O(n * log(n))`.
On **average**, when the distribution of elements across buckets is reasonably uniform, it can be shown that bucket sort runs on average `O(n + k)` for `k` buckets.
## References
- [Bucket Sort on Wikipedia](https://en.wikipedia.org/wiki/Bucket_sort)

View File

@ -0,0 +1,33 @@
import BucketSort from '../BucketSort';
import {
equalArr,
notSortedArr,
reverseArr,
sortedArr,
} from '../../SortTester';
describe('BucketSort', () => {
it('should sort the array of numbers with different buckets amounts', () => {
expect(BucketSort(notSortedArr, 4)).toEqual(sortedArr);
expect(BucketSort(equalArr, 4)).toEqual(equalArr);
expect(BucketSort(reverseArr, 4)).toEqual(sortedArr);
expect(BucketSort(sortedArr, 4)).toEqual(sortedArr);
expect(BucketSort(notSortedArr, 10)).toEqual(sortedArr);
expect(BucketSort(equalArr, 10)).toEqual(equalArr);
expect(BucketSort(reverseArr, 10)).toEqual(sortedArr);
expect(BucketSort(sortedArr, 10)).toEqual(sortedArr);
expect(BucketSort(notSortedArr, 50)).toEqual(sortedArr);
expect(BucketSort(equalArr, 50)).toEqual(equalArr);
expect(BucketSort(reverseArr, 50)).toEqual(sortedArr);
expect(BucketSort(sortedArr, 50)).toEqual(sortedArr);
});
it('should sort the array of numbers with the default buckets of 1', () => {
expect(BucketSort(notSortedArr)).toEqual(sortedArr);
expect(BucketSort(equalArr)).toEqual(equalArr);
expect(BucketSort(reverseArr)).toEqual(sortedArr);
expect(BucketSort(sortedArr)).toEqual(sortedArr);
});
});

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

View File

@ -33,7 +33,7 @@ store them in memory, which gives at best a time complexity `O(n log n)`. That
would seem to make radix sort at most equally efficient as the best
comparison-based sorts (and worse if keys are much longer than `log n`).
![Radix Sort](https://www.researchgate.net/publication/291086231/figure/fig1/AS:614214452404240@1523451545568/Simplistic-illustration-of-the-steps-performed-in-a-radix-sort-In-this-example-the.png)
![Radix Sort](./images/radix-sort.png)
## Complexity

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB