This commit is contained in:
Yunji Kim 2024-07-17 10:37:17 +09:00 committed by GitHub
commit 1f2b2c151d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 297 additions and 0 deletions

View File

@ -0,0 +1,45 @@
# Huffman Coding Algorithm
![Huffman Coding](https://upload.wikimedia.org/wikipedia/commons/thumb/8/82/Huffman_tree_2.svg/1920px-Huffman_tree_2.svg.png)
In computer science and information theory,
a Huffman code is a particular type of optimal prefix code
that is commonly used for lossless data compression.
The process of finding and/or using such a code proceeds by means of Huffman coding, an algorithm developed by David A.
Huffman while he was a Sc.D. student at MIT, and published in the 1952
paper "A Method for the Construction of Minimum-Redundancy Codes".
The output from Huffman's algorithm can be viewed as a variable-length code table
for encoding a source symbol (such as a character in a file).
The algorithm derives this table from the estimated probability or frequency of occurrence (weight)
for each possible value of the source symbol.
As in other entropy encoding methods,
more common symbols are generally represented using fewer bits than less common symbols.
Huffman's method can be efficiently implemented,
finding a code in time linear to the number of input weights if these weights are sorted.
![Constructing a Huffman Tree](https://upload.wikimedia.org/wikipedia/commons/d/d8/HuffmanCodeAlg.png)
## Encode : Compression
![Visualization of encoding](https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Huffman_coding_visualisation.svg/1920px-Huffman_coding_visualisation.svg.png)
The simplest construction algorithm uses a priority queue where the node with lowest probability is given highest priority:
1. Create a leaf node for each symbol and add it to the priority queue.
2. While there is more than one node in the queue:
1. Remove the two nodes of highest priority (lowest probability) from the queue
2. Create a new internal node with these two nodes as children and with probability equal to the sum of the two nodes' probabilities.
3. Add the new node to the queue.
3. The remaining node is the root node and the tree is complete.
Since efficient priority queue data structures require `O(log n)` time per insertion, and a tree with `n` leaves has `2n1` nodes, this algorithm operates in `O(n log n)` time, where `n` is the number of symbols.
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Huffman_coding)
- [GitHub](https://gist.github.com/1995eaton/86f10f4d0247b4e4e65e)

View File

@ -0,0 +1,133 @@
var Heap = function(fn) {
this.fn = fn || function(e) {
return e;
};
this.items = [];
};
Heap.prototype = {
swap: function(i, j) {
this.items[i] = [
this.items[j],
this.items[j] = this.items[i]
][0];
},
bubble: function(index) {
var parent = ~~((index - 1) / 2);
if (this.item(parent) < this.item(index)) {
this.swap(index, parent);
this.bubble(parent);
}
},
item: function(index) {
return this.fn(this.items[index]);
},
pop: function() {
return this.items.pop();
},
sift: function(index, end) {
var child = index * 2 + 1;
if (child < end) {
if (child + 1 < end && this.item(child + 1) > this.item(child)) {
child++;
}
if (this.item(index) < this.item(child)) {
this.swap(index, child);
return this.sift(child, end);
}
}
},
push: function() {
var lastIndex = this.items.length;
for (var i = 0; i < arguments.length; i++) {
this.items.push(arguments[i]);
this.bubble(lastIndex++);
}
},
get length() {
return this.items.length;
}
};
var Huffman = {
// encode function
encode: function(data) {
var prob = {};
var tree = new Heap(function(e) {
return e[0];
});
for (var i = 0; i < data.length; i++) {
if (prob.hasOwnProperty(data[i])) {
prob[data[i]]++;
} else {
prob[data[i]] = 1;
}
}
Object.keys(prob).sort(function(a, b) {
return ~~(Math.random() * 2);
}).forEach(function(e) {
tree.push([prob[e], e]);
});
while (tree.length > 1) {
var first = tree.pop(),
second = tree.pop();
tree.push([first[0] + second[0], [first[1], second[1]]]);
}
var dict = {};
var recurse = function(root, string) {
if (root.constructor === Array) {
recurse(root[0], string + '0');
recurse(root[1], string + '1');
} else {
dict[root] = string;
}
};
tree.items = tree.pop()[1];
recurse(tree.items, '');
var result = '';
for (var i = 0; i < data.length; i++) {
result += dict[data.charAt(i)];
}
var header = Object.keys(dict).map(function(e) {
return e.charCodeAt(0) + '|' + dict[e];
}).join('-') + '/';
return header + result;
},
// decode function
decode: function(string) {
string = string.split('/');
var data = string[1].split(''),
header = {};
string[0].split('-').forEach(function(e) {
var values = e.split('|');
header[values[1]] = String.fromCharCode(values[0]);
});
var result = '';
while (data.length) {
var i = 0,
cur = '';
while (data.length) {
cur += data.shift();
if (header.hasOwnProperty(cur)) {
result += header[cur];
break;
}
}
}
return result;
}
};
/**** test code ****/
var test = 'OSS1234L1OSSTEST'
console.log("1. test string = ",test);
// test encode
var enc = Huffman.encode(test);
console.log("2. encoded string = ",enc);
// test decode
var dec = Huffman.decode(enc);
console.log("3. decoded string = ",dec);

View File

@ -0,0 +1,119 @@
var Heap = function(fn) {
this.fn = fn || function(e) {
return e;
};
this.items = [];
};
Heap.prototype = {
swap: function(i, j) {
this.items[i] = [
this.items[j],
this.items[j] = this.items[i]
][0];
},
bubble: function(index) {
var parent = ~~((index - 1) / 2);
if (this.item(parent) < this.item(index)) {
this.swap(index, parent);
this.bubble(parent);
}
},
item: function(index) {
return this.fn(this.items[index]);
},
pop: function() {
return this.items.pop();
},
sift: function(index, end) {
var child = index * 2 + 1;
if (child < end) {
if (child + 1 < end && this.item(child + 1) > this.item(child)) {
child++;
}
if (this.item(index) < this.item(child)) {
this.swap(index, child);
return this.sift(child, end);
}
}
},
push: function() {
var lastIndex = this.items.length;
for (var i = 0; i < arguments.length; i++) {
this.items.push(arguments[i]);
this.bubble(lastIndex++);
}
},
get length() {
return this.items.length;
}
};
var Huffman = {
// encode function
encode: function(data) {
var prob = {};
var tree = new Heap(function(e) {
return e[0];
});
for (var i = 0; i < data.length; i++) {
if (prob.hasOwnProperty(data[i])) {
prob[data[i]]++;
} else {
prob[data[i]] = 1;
}
}
Object.keys(prob).sort(function(a, b) {
return ~~(Math.random() * 2);
}).forEach(function(e) {
tree.push([prob[e], e]);
});
while (tree.length > 1) {
var first = tree.pop(),
second = tree.pop();
tree.push([first[0] + second[0], [first[1], second[1]]]);
}
var dict = {};
var recurse = function(root, string) {
if (root.constructor === Array) {
recurse(root[0], string + '0');
recurse(root[1], string + '1');
} else {
dict[root] = string;
}
};
tree.items = tree.pop()[1];
recurse(tree.items, '');
var result = '';
for (var i = 0; i < data.length; i++) {
result += dict[data.charAt(i)];
}
var header = Object.keys(dict).map(function(e) {
return e.charCodeAt(0) + '|' + dict[e];
}).join('-') + '/';
return header + result;
},
// decode function
decode: function(string) {
string = string.split('/');
var data = string[1].split(''),
header = {};
string[0].split('-').forEach(function(e) {
var values = e.split('|');
header[values[1]] = String.fromCharCode(values[0]);
});
var result = '';
while (data.length) {
var i = 0,
cur = '';
while (data.length) {
cur += data.shift();
if (header.hasOwnProperty(cur)) {
result += header[cur];
break;
}
}
}
return result;
}
};