mirror of
https://github.moeyy.xyz/https://github.com/trekhleb/javascript-algorithms.git
synced 2024-12-26 23:21:18 +08:00
Add iterative version of Euclidean algorithm.
This commit is contained in:
parent
c00c689255
commit
2451db975d
@ -1,7 +1,7 @@
|
|||||||
import euclideanAlgorithm from '../euclideanAlgorithm';
|
import euclideanAlgorithm from '../euclideanAlgorithm';
|
||||||
|
|
||||||
describe('euclideanAlgorithm', () => {
|
describe('euclideanAlgorithm', () => {
|
||||||
it('should calculate GCD', () => {
|
it('should calculate GCD recursively', () => {
|
||||||
expect(euclideanAlgorithm(0, 0)).toBe(0);
|
expect(euclideanAlgorithm(0, 0)).toBe(0);
|
||||||
expect(euclideanAlgorithm(2, 0)).toBe(2);
|
expect(euclideanAlgorithm(2, 0)).toBe(2);
|
||||||
expect(euclideanAlgorithm(0, 2)).toBe(2);
|
expect(euclideanAlgorithm(0, 2)).toBe(2);
|
@ -0,0 +1,26 @@
|
|||||||
|
import euclideanAlgorithmIterative from '../euclideanAlgorithmIterative';
|
||||||
|
|
||||||
|
describe('euclideanAlgorithmIterative', () => {
|
||||||
|
it('should calculate GCD iteratively', () => {
|
||||||
|
expect(euclideanAlgorithmIterative(0, 0)).toBe(0);
|
||||||
|
expect(euclideanAlgorithmIterative(2, 0)).toBe(2);
|
||||||
|
expect(euclideanAlgorithmIterative(0, 2)).toBe(2);
|
||||||
|
expect(euclideanAlgorithmIterative(1, 2)).toBe(1);
|
||||||
|
expect(euclideanAlgorithmIterative(2, 1)).toBe(1);
|
||||||
|
expect(euclideanAlgorithmIterative(6, 6)).toBe(6);
|
||||||
|
expect(euclideanAlgorithmIterative(2, 4)).toBe(2);
|
||||||
|
expect(euclideanAlgorithmIterative(4, 2)).toBe(2);
|
||||||
|
expect(euclideanAlgorithmIterative(12, 4)).toBe(4);
|
||||||
|
expect(euclideanAlgorithmIterative(4, 12)).toBe(4);
|
||||||
|
expect(euclideanAlgorithmIterative(5, 13)).toBe(1);
|
||||||
|
expect(euclideanAlgorithmIterative(27, 13)).toBe(1);
|
||||||
|
expect(euclideanAlgorithmIterative(24, 60)).toBe(12);
|
||||||
|
expect(euclideanAlgorithmIterative(60, 24)).toBe(12);
|
||||||
|
expect(euclideanAlgorithmIterative(252, 105)).toBe(21);
|
||||||
|
expect(euclideanAlgorithmIterative(105, 252)).toBe(21);
|
||||||
|
expect(euclideanAlgorithmIterative(1071, 462)).toBe(21);
|
||||||
|
expect(euclideanAlgorithmIterative(462, 1071)).toBe(21);
|
||||||
|
expect(euclideanAlgorithmIterative(462, -1071)).toBe(21);
|
||||||
|
expect(euclideanAlgorithmIterative(-462, -1071)).toBe(21);
|
||||||
|
});
|
||||||
|
});
|
@ -1,25 +1,15 @@
|
|||||||
/**
|
/**
|
||||||
|
* Recursive version of Euclidean Algorithm of finding greatest common divisor (GCD).
|
||||||
* @param {number} originalA
|
* @param {number} originalA
|
||||||
* @param {number} originalB
|
* @param {number} originalB
|
||||||
* @return {number}
|
* @return {number}
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/*Method 1: A bit Complex to understand*/
|
|
||||||
export default function euclideanAlgorithm(originalA, originalB) {
|
export default function euclideanAlgorithm(originalA, originalB) {
|
||||||
|
// Make input numbers positive.
|
||||||
const a = Math.abs(originalA);
|
const a = Math.abs(originalA);
|
||||||
const b = Math.abs(originalB);
|
const b = Math.abs(originalB);
|
||||||
|
|
||||||
|
// To make algorithm work faster instead of subtracting one number from the other
|
||||||
|
// we may use modulo operation.
|
||||||
return (b === 0) ? a : euclideanAlgorithm(b, a % b);
|
return (b === 0) ? a : euclideanAlgorithm(b, a % b);
|
||||||
}
|
}
|
||||||
|
|
||||||
/*Method 2: Easy to evaluate*/
|
|
||||||
export default function euclideanAlgorithm2(originalA, originalB) {
|
|
||||||
const a = Math.abs(originalA);
|
|
||||||
const b = Math.abs(originalB);
|
|
||||||
|
|
||||||
while(a != b){
|
|
||||||
[a,b] = a>b : [a-b, b] : [a, b-a]
|
|
||||||
}
|
|
||||||
|
|
||||||
return a || b;
|
|
||||||
}
|
|
||||||
|
@ -0,0 +1,20 @@
|
|||||||
|
/**
|
||||||
|
* Iterative version of Euclidean Algorithm of finding greatest common divisor (GCD).
|
||||||
|
* @param {number} originalA
|
||||||
|
* @param {number} originalB
|
||||||
|
* @return {number}
|
||||||
|
*/
|
||||||
|
export default function euclideanAlgorithmIterative(originalA, originalB) {
|
||||||
|
// Make input numbers positive.
|
||||||
|
let a = Math.abs(originalA);
|
||||||
|
let b = Math.abs(originalB);
|
||||||
|
|
||||||
|
// Subtract one number from another until both numbers would become the same.
|
||||||
|
// This will be out GCD. Also quit the loop if one of the numbers is zero.
|
||||||
|
while (a && b && a !== b) {
|
||||||
|
[a, b] = a > b ? [a - b, b] : [a, b - a];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return the number that is not equal to zero since the last subtraction (it will be a GCD).
|
||||||
|
return a || b;
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user