Add Tarjan's algorithm.

This commit is contained in:
Oleksii Trekhleb 2018-05-11 15:34:58 +03:00
parent 21d4144e5a
commit 25703c37ac
5 changed files with 327 additions and 2 deletions

View File

@ -72,7 +72,8 @@
* [Prims Algorithm](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/prim) - finding Minimum Spanning Tree (MST) for weighted undirected graph
* [Kruskals Algorithm](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/kruskal) - finding Minimum Spanning Tree (MST) for weighted undirected graph
* [Topological Sorting](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/topological-sorting) - DFS method
* [Articulation Points](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/articulation-points) - Tarjan's algorithm
* [Articulation Points](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/articulation-points) - Tarjan's algorithm (DFS based)
* [Bridges](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/bridges) - DFS based algorithm
* [Eulerian Path and Eulerian Circuit](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/eulerian-path)
* Strongly Connected Component algorithm
* Shortest Path Faster Algorithm (SPFA)

View File

@ -14,7 +14,7 @@ class VisitMetadata {
}
/**
* Tarjan's algorithm for rinding articulation points in graph.
* Tarjan's algorithm for finding articulation points in graph.
*
* @param {Graph} graph
* @return {GraphVertex[]}

View File

@ -0,0 +1,26 @@
# Bridges in Graph
In graph theory, a **bridge**, **isthmus**, **cut-edge**, or **cut arc** is an edge
of a graph whose deletion increases its number of connected components. Equivalently,
an edge is a bridge if and only if it is not contained in any cycle. A graph is said
to be bridgeless or isthmus-free if it contains no bridges.
![Bridges in graph](https://upload.wikimedia.org/wikipedia/commons/d/df/Graph_cut_edges.svg)
A graph with 16 vertices and 6 bridges (highlighted in red)
![Bridgeless](https://upload.wikimedia.org/wikipedia/commons/b/bf/Undirected.svg)
An undirected connected graph with no cut edges
![Bridges in graph](https://www.geeksforgeeks.org/wp-content/uploads/Bridge1.png)
![Bridges in graph](https://www.geeksforgeeks.org/wp-content/uploads/Bridge2.png)
![Bridges in graph](https://www.geeksforgeeks.org/wp-content/uploads/Bridge3.png)
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29#Tarjan.27s_Bridge-finding_algorithm)
- [GeeksForGeeks](https://www.geeksforgeeks.org/bridge-in-a-graph/)
- [GeeksForGeeks on YouTube](https://www.youtube.com/watch?time_continue=110&v=thLQYBlz2DM)

View File

@ -0,0 +1,203 @@
import GraphVertex from '../../../../data-structures/graph/GraphVertex';
import GraphEdge from '../../../../data-structures/graph/GraphEdge';
import Graph from '../../../../data-structures/graph/Graph';
import graphBridges from '../graphBridges';
describe('graphBridges', () => {
it('should find bridges in simple graph', () => {
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const edgeAB = new GraphEdge(vertexA, vertexB);
const edgeBC = new GraphEdge(vertexB, vertexC);
const edgeCD = new GraphEdge(vertexC, vertexD);
const graph = new Graph();
graph
.addEdge(edgeAB)
.addEdge(edgeBC)
.addEdge(edgeCD);
const bridges = graphBridges(graph);
expect(bridges.length).toBe(3);
expect(bridges[0].getKey()).toBe(edgeCD.getKey());
expect(bridges[1].getKey()).toBe(edgeBC.getKey());
expect(bridges[2].getKey()).toBe(edgeAB.getKey());
});
it('should find bridges in simple graph with back edge', () => {
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const edgeAB = new GraphEdge(vertexA, vertexB);
const edgeBC = new GraphEdge(vertexB, vertexC);
const edgeCD = new GraphEdge(vertexC, vertexD);
const edgeAC = new GraphEdge(vertexA, vertexC);
const graph = new Graph();
graph
.addEdge(edgeAB)
.addEdge(edgeAC)
.addEdge(edgeBC)
.addEdge(edgeCD);
const bridges = graphBridges(graph);
expect(bridges.length).toBe(1);
expect(bridges[0].getKey()).toBe(edgeCD.getKey());
});
it('should find bridges in graph', () => {
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const vertexE = new GraphVertex('E');
const vertexF = new GraphVertex('F');
const vertexG = new GraphVertex('G');
const vertexH = new GraphVertex('H');
const edgeAB = new GraphEdge(vertexA, vertexB);
const edgeBC = new GraphEdge(vertexB, vertexC);
const edgeAC = new GraphEdge(vertexA, vertexC);
const edgeCD = new GraphEdge(vertexC, vertexD);
const edgeDE = new GraphEdge(vertexD, vertexE);
const edgeEG = new GraphEdge(vertexE, vertexG);
const edgeEF = new GraphEdge(vertexE, vertexF);
const edgeGF = new GraphEdge(vertexG, vertexF);
const edgeFH = new GraphEdge(vertexF, vertexH);
const graph = new Graph();
graph
.addEdge(edgeAB)
.addEdge(edgeBC)
.addEdge(edgeAC)
.addEdge(edgeCD)
.addEdge(edgeDE)
.addEdge(edgeEG)
.addEdge(edgeEF)
.addEdge(edgeGF)
.addEdge(edgeFH);
const bridges = graphBridges(graph);
expect(bridges.length).toBe(3);
expect(bridges[0].getKey()).toBe(edgeFH.getKey());
expect(bridges[1].getKey()).toBe(edgeDE.getKey());
expect(bridges[2].getKey()).toBe(edgeCD.getKey());
});
it('should find bridges in graph starting with different root vertex', () => {
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const vertexE = new GraphVertex('E');
const vertexF = new GraphVertex('F');
const vertexG = new GraphVertex('G');
const vertexH = new GraphVertex('H');
const edgeAB = new GraphEdge(vertexA, vertexB);
const edgeBC = new GraphEdge(vertexB, vertexC);
const edgeAC = new GraphEdge(vertexA, vertexC);
const edgeCD = new GraphEdge(vertexC, vertexD);
const edgeDE = new GraphEdge(vertexD, vertexE);
const edgeEG = new GraphEdge(vertexE, vertexG);
const edgeEF = new GraphEdge(vertexE, vertexF);
const edgeGF = new GraphEdge(vertexG, vertexF);
const edgeFH = new GraphEdge(vertexF, vertexH);
const graph = new Graph();
graph
.addEdge(edgeDE)
.addEdge(edgeAB)
.addEdge(edgeBC)
.addEdge(edgeAC)
.addEdge(edgeCD)
.addEdge(edgeEG)
.addEdge(edgeEF)
.addEdge(edgeGF)
.addEdge(edgeFH);
const bridges = graphBridges(graph);
expect(bridges.length).toBe(3);
expect(bridges[0].getKey()).toBe(edgeFH.getKey());
expect(bridges[1].getKey()).toBe(edgeDE.getKey());
expect(bridges[2].getKey()).toBe(edgeCD.getKey());
});
it('should find bridges in yet another graph #1', () => {
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const vertexE = new GraphVertex('E');
const edgeAB = new GraphEdge(vertexA, vertexB);
const edgeAC = new GraphEdge(vertexA, vertexC);
const edgeBC = new GraphEdge(vertexB, vertexC);
const edgeCD = new GraphEdge(vertexC, vertexD);
const edgeDE = new GraphEdge(vertexD, vertexE);
const graph = new Graph();
graph
.addEdge(edgeAB)
.addEdge(edgeAC)
.addEdge(edgeBC)
.addEdge(edgeCD)
.addEdge(edgeDE);
const bridges = graphBridges(graph);
expect(bridges.length).toBe(2);
expect(bridges[0].getKey()).toBe(edgeDE.getKey());
expect(bridges[1].getKey()).toBe(edgeCD.getKey());
});
it('should find bridges in yet another graph #2', () => {
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const vertexE = new GraphVertex('E');
const vertexF = new GraphVertex('F');
const vertexG = new GraphVertex('G');
const edgeAB = new GraphEdge(vertexA, vertexB);
const edgeAC = new GraphEdge(vertexA, vertexC);
const edgeBC = new GraphEdge(vertexB, vertexC);
const edgeCD = new GraphEdge(vertexC, vertexD);
const edgeCE = new GraphEdge(vertexC, vertexE);
const edgeCF = new GraphEdge(vertexC, vertexF);
const edgeEG = new GraphEdge(vertexE, vertexG);
const edgeFG = new GraphEdge(vertexF, vertexG);
const graph = new Graph();
graph
.addEdge(edgeAB)
.addEdge(edgeAC)
.addEdge(edgeBC)
.addEdge(edgeCD)
.addEdge(edgeCE)
.addEdge(edgeCF)
.addEdge(edgeEG)
.addEdge(edgeFG);
const bridges = graphBridges(graph);
expect(bridges.length).toBe(1);
expect(bridges[0].getKey()).toBe(edgeCD.getKey());
});
});

View File

@ -0,0 +1,95 @@
import depthFirstSearch from '../depth-first-search/depthFirstSearch';
/**
* Helper class for visited vertex metadata.
*/
class VisitMetadata {
constructor({ discoveryTime, lowDiscoveryTime }) {
this.discoveryTime = discoveryTime;
this.lowDiscoveryTime = lowDiscoveryTime;
}
}
/**
* @param {Graph} graph
* @return {GraphVertex[]}
*/
export default function graphBridges(graph) {
// Set of vertices we've already visited during DFS.
const visitedSet = {};
// Set of bridges.
const bridges = {};
// Time needed to discover to the current vertex.
let discoveryTime = 0;
// Peek the start vertex for DFS traversal.
const startVertex = graph.getAllVertices()[0];
const dfsCallbacks = {
/**
* @param {GraphVertex} currentVertex
*/
enterVertex: ({ currentVertex }) => {
// Tick discovery time.
discoveryTime += 1;
// Put current vertex to visited set.
visitedSet[currentVertex.getKey()] = new VisitMetadata({
discoveryTime,
lowDiscoveryTime: discoveryTime,
});
},
/**
* @param {GraphVertex} currentVertex
* @param {GraphVertex} previousVertex
*/
leaveVertex: ({ currentVertex, previousVertex }) => {
if (previousVertex === null) {
// Don't do anything for the root vertex if it is already current (not previous one).
return;
}
// Check if current node is connected to any early node other then previous one.
visitedSet[currentVertex.getKey()].lowDiscoveryTime = currentVertex.getNeighbors()
.filter(earlyNeighbor => earlyNeighbor.getKey() !== previousVertex.getKey())
.reduce(
/**
* @param {number} lowestDiscoveryTime
* @param {GraphVertex} neighbor
*/
(lowestDiscoveryTime, neighbor) => {
const neighborLowTime = visitedSet[neighbor.getKey()].lowDiscoveryTime;
return neighborLowTime < lowestDiscoveryTime ? neighborLowTime : lowestDiscoveryTime;
},
visitedSet[currentVertex.getKey()].lowDiscoveryTime,
);
// Compare low discovery times. In case if current low discovery time is less than the one
// in previous vertex then update previous vertex low time.
const currentLowDiscoveryTime = visitedSet[currentVertex.getKey()].lowDiscoveryTime;
const previousLowDiscoveryTime = visitedSet[previousVertex.getKey()].lowDiscoveryTime;
if (currentLowDiscoveryTime < previousLowDiscoveryTime) {
visitedSet[previousVertex.getKey()].lowDiscoveryTime = currentLowDiscoveryTime;
}
// Compare current vertex low discovery time with parent discovery time. Check if there
// are any short path (back edge) exists. If we can't get to current vertex other then
// via parent then the parent vertex is articulation point for current one.
const parentDiscoveryTime = visitedSet[previousVertex.getKey()].discoveryTime;
if (parentDiscoveryTime < currentLowDiscoveryTime) {
const bridge = graph.findEdge(previousVertex, currentVertex);
bridges[bridge.getKey()] = bridge;
}
},
allowTraversal: ({ nextVertex }) => {
return !visitedSet[nextVertex.getKey()];
},
};
// Do Depth First Search traversal over submitted graph.
depthFirstSearch(graph, startVertex, dfsCallbacks);
return Object.values(bridges);
}