Ad hoc versions of MinHeap, MaxHeap, and DisjointSet (#1117)

* Add DisjointSetMinimalistic

* Add MinHeapMinimalistic and MaxHeapMinimalistic

* Rename minimalistic to adhoc

* Update README
This commit is contained in:
Oleksii Trekhleb 2024-03-09 17:15:19 +01:00 committed by GitHub
parent ac78353e3c
commit 2c67b48c21
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 552 additions and 0 deletions

View File

@ -0,0 +1,78 @@
/**
* The minimalistic (ad hoc) version of a DisjointSet (or a UnionFind) data structure
* that doesn't have external dependencies and that is easy to copy-paste and
* use during the coding interview if allowed by the interviewer (since many
* data structures in JS are missing).
*
* Time Complexity:
*
* - Constructor: O(N)
* - Find: O(α(N))
* - Union: O(α(N))
* - Connected: O(α(N))
*
* Where N is the number of vertices in the graph.
* α refers to the Inverse Ackermann function.
* In practice, we assume it's a constant.
* In other words, O(α(N)) is regarded as O(1) on average.
*/
class DisjointSetAdhoc {
/**
* Initializes the set of specified size.
* @param {number} size
*/
constructor(size) {
// The index of a cell is an id of the node in a set.
// The value of a cell is an id (index) of the root node.
// By default, the node is a parent of itself.
this.roots = new Array(size).fill(0).map((_, i) => i);
// Using the heights array to record the height of each node.
// By default each node has a height of 1 because it has no children.
this.heights = new Array(size).fill(1);
}
/**
* Finds the root of node `a`
* @param {number} a
* @returns {number}
*/
find(a) {
if (a === this.roots[a]) return a;
this.roots[a] = this.find(this.roots[a]);
return this.roots[a];
}
/**
* Joins the `a` and `b` nodes into same set.
* @param {number} a
* @param {number} b
* @returns {number}
*/
union(a, b) {
const aRoot = this.find(a);
const bRoot = this.find(b);
if (aRoot === bRoot) return;
if (this.heights[aRoot] > this.heights[bRoot]) {
this.roots[bRoot] = aRoot;
} else if (this.heights[aRoot] < this.heights[bRoot]) {
this.roots[aRoot] = bRoot;
} else {
this.roots[bRoot] = aRoot;
this.heights[aRoot] += 1;
}
}
/**
* Checks if `a` and `b` belong to the same set.
* @param {number} a
* @param {number} b
*/
connected(a, b) {
return this.find(a) === this.find(b);
}
}
export default DisjointSetAdhoc;

View File

@ -19,6 +19,11 @@ _MakeSet_ creates 8 singletons.
After some operations of _Union_, some sets are grouped together.
## Implementation
- [DisjointSet.js](./DisjointSet.js)
- [DisjointSetAdhoc.js](./DisjointSetAdhoc.js) - The minimalistic (ad hoc) version of a DisjointSet (or a UnionFind) data structure that doesn't have external dependencies and that is easy to copy-paste and use during the coding interview if allowed by the interviewer (since many data structures in JS are missing).
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Disjoint-set_data_structure)

View File

@ -0,0 +1,50 @@
import DisjointSetAdhoc from '../DisjointSetAdhoc';
describe('DisjointSetAdhoc', () => {
it('should create unions and find connected elements', () => {
const set = new DisjointSetAdhoc(10);
// 1-2-5-6-7 3-8-9 4
set.union(1, 2);
set.union(2, 5);
set.union(5, 6);
set.union(6, 7);
set.union(3, 8);
set.union(8, 9);
expect(set.connected(1, 5)).toBe(true);
expect(set.connected(5, 7)).toBe(true);
expect(set.connected(3, 8)).toBe(true);
expect(set.connected(4, 9)).toBe(false);
expect(set.connected(4, 7)).toBe(false);
// 1-2-5-6-7 3-8-9-4
set.union(9, 4);
expect(set.connected(4, 9)).toBe(true);
expect(set.connected(4, 3)).toBe(true);
expect(set.connected(8, 4)).toBe(true);
expect(set.connected(8, 7)).toBe(false);
expect(set.connected(2, 3)).toBe(false);
});
it('should keep the height of the tree small', () => {
const set = new DisjointSetAdhoc(10);
// 1-2-6-7-9 1 3 4 5
set.union(7, 6);
set.union(1, 2);
set.union(2, 6);
set.union(1, 7);
set.union(9, 1);
expect(set.connected(1, 7)).toBe(true);
expect(set.connected(6, 9)).toBe(true);
expect(set.connected(4, 9)).toBe(false);
expect(Math.max(...set.heights)).toBe(3);
});
});

View File

@ -0,0 +1,115 @@
/**
* The minimalistic (ad hoc) version of a MaxHeap data structure that doesn't have
* external dependencies and that is easy to copy-paste and use during the
* coding interview if allowed by the interviewer (since many data
* structures in JS are missing).
*/
class MaxHeapAdhoc {
constructor(heap = []) {
this.heap = [];
heap.forEach(this.add);
}
add(num) {
this.heap.push(num);
this.heapifyUp();
}
peek() {
return this.heap[0];
}
poll() {
if (this.heap.length === 0) return undefined;
const top = this.heap[0];
this.heap[0] = this.heap[this.heap.length - 1];
this.heap.pop();
this.heapifyDown();
return top;
}
isEmpty() {
return this.heap.length === 0;
}
toString() {
return this.heap.join(',');
}
heapifyUp() {
let nodeIndex = this.heap.length - 1;
while (nodeIndex > 0) {
const parentIndex = this.getParentIndex(nodeIndex);
if (this.heap[parentIndex] >= this.heap[nodeIndex]) break;
this.swap(parentIndex, nodeIndex);
nodeIndex = parentIndex;
}
}
heapifyDown() {
let nodeIndex = 0;
while (
(
this.hasLeftChild(nodeIndex) && this.heap[nodeIndex] < this.leftChild(nodeIndex)
)
|| (
this.hasRightChild(nodeIndex) && this.heap[nodeIndex] < this.rightChild(nodeIndex)
)
) {
const leftIndex = this.getLeftChildIndex(nodeIndex);
const rightIndex = this.getRightChildIndex(nodeIndex);
const left = this.leftChild(nodeIndex);
const right = this.rightChild(nodeIndex);
if (this.hasLeftChild(nodeIndex) && this.hasRightChild(nodeIndex)) {
if (left >= right) {
this.swap(leftIndex, nodeIndex);
nodeIndex = leftIndex;
} else {
this.swap(rightIndex, nodeIndex);
nodeIndex = rightIndex;
}
} else if (this.hasLeftChild(nodeIndex)) {
this.swap(leftIndex, nodeIndex);
nodeIndex = leftIndex;
}
}
}
getLeftChildIndex(parentIndex) {
return (2 * parentIndex) + 1;
}
getRightChildIndex(parentIndex) {
return (2 * parentIndex) + 2;
}
getParentIndex(childIndex) {
return Math.floor((childIndex - 1) / 2);
}
hasLeftChild(parentIndex) {
return this.getLeftChildIndex(parentIndex) < this.heap.length;
}
hasRightChild(parentIndex) {
return this.getRightChildIndex(parentIndex) < this.heap.length;
}
leftChild(parentIndex) {
return this.heap[this.getLeftChildIndex(parentIndex)];
}
rightChild(parentIndex) {
return this.heap[this.getRightChildIndex(parentIndex)];
}
swap(indexOne, indexTwo) {
const tmp = this.heap[indexTwo];
this.heap[indexTwo] = this.heap[indexOne];
this.heap[indexOne] = tmp;
}
}
export default MaxHeapAdhoc;

View File

@ -0,0 +1,117 @@
/**
* The minimalistic (ad hoc) version of a MinHeap data structure that doesn't have
* external dependencies and that is easy to copy-paste and use during the
* coding interview if allowed by the interviewer (since many data
* structures in JS are missing).
*/
class MinHeapAdhoc {
constructor(heap = []) {
this.heap = [];
heap.forEach(this.add);
}
add(num) {
this.heap.push(num);
this.heapifyUp();
}
peek() {
return this.heap[0];
}
poll() {
if (this.heap.length === 0) return undefined;
const top = this.heap[0];
this.heap[0] = this.heap[this.heap.length - 1];
this.heap.pop();
this.heapifyDown();
return top;
}
isEmpty() {
return this.heap.length === 0;
}
toString() {
return this.heap.join(',');
}
heapifyUp() {
let nodeIndex = this.heap.length - 1;
while (nodeIndex > 0) {
const parentIndex = this.getParentIndex(nodeIndex);
if (this.heap[parentIndex] <= this.heap[nodeIndex]) break;
this.swap(parentIndex, nodeIndex);
nodeIndex = parentIndex;
}
}
heapifyDown() {
let nodeIndex = 0;
while (
(
this.hasLeftChild(nodeIndex)
&& this.heap[nodeIndex] > this.leftChild(nodeIndex)
)
|| (
this.hasRightChild(nodeIndex)
&& this.heap[nodeIndex] > this.rightChild(nodeIndex)
)
) {
const leftIndex = this.getLeftChildIndex(nodeIndex);
const rightIndex = this.getRightChildIndex(nodeIndex);
const left = this.leftChild(nodeIndex);
const right = this.rightChild(nodeIndex);
if (this.hasLeftChild(nodeIndex) && this.hasRightChild(nodeIndex)) {
if (left <= right) {
this.swap(leftIndex, nodeIndex);
nodeIndex = leftIndex;
} else {
this.swap(rightIndex, nodeIndex);
nodeIndex = rightIndex;
}
} else if (this.hasLeftChild(nodeIndex)) {
this.swap(leftIndex, nodeIndex);
nodeIndex = leftIndex;
}
}
}
getLeftChildIndex(parentIndex) {
return 2 * parentIndex + 1;
}
getRightChildIndex(parentIndex) {
return 2 * parentIndex + 2;
}
getParentIndex(childIndex) {
return Math.floor((childIndex - 1) / 2);
}
hasLeftChild(parentIndex) {
return this.getLeftChildIndex(parentIndex) < this.heap.length;
}
hasRightChild(parentIndex) {
return this.getRightChildIndex(parentIndex) < this.heap.length;
}
leftChild(parentIndex) {
return this.heap[this.getLeftChildIndex(parentIndex)];
}
rightChild(parentIndex) {
return this.heap[this.getRightChildIndex(parentIndex)];
}
swap(indexOne, indexTwo) {
const tmp = this.heap[indexTwo];
this.heap[indexTwo] = this.heap[indexOne];
this.heap[indexOne] = tmp;
}
}
export default MinHeapAdhoc;

View File

@ -58,6 +58,11 @@ Where:
> In this repository, the [MaxHeap.js](./MaxHeap.js) and [MinHeap.js](./MinHeap.js) are examples of the **Binary** heap.
## Implementation
- [MaxHeap.js](./MaxHeap.js) and [MinHeap.js](./MinHeap.js)
- [MaxHeapAdhoc.js](./MaxHeapAdhoc.js) and [MinHeapAdhoc.js](./MinHeapAdhoc.js) - The minimalistic (ad hoc) version of a MinHeap/MaxHeap data structure that doesn't have external dependencies and that is easy to copy-paste and use during the coding interview if allowed by the interviewer (since many data structures in JS are missing).
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Heap_(data_structure))

View File

@ -0,0 +1,91 @@
import MaxHeap from '../MaxHeapAdhoc';
describe('MaxHeapAdhoc', () => {
it('should create an empty max heap', () => {
const maxHeap = new MaxHeap();
expect(maxHeap).toBeDefined();
expect(maxHeap.peek()).toBe(undefined);
expect(maxHeap.isEmpty()).toBe(true);
});
it('should add items to the heap and heapify it up', () => {
const maxHeap = new MaxHeap();
maxHeap.add(5);
expect(maxHeap.isEmpty()).toBe(false);
expect(maxHeap.peek()).toBe(5);
expect(maxHeap.toString()).toBe('5');
maxHeap.add(3);
expect(maxHeap.peek()).toBe(5);
expect(maxHeap.toString()).toBe('5,3');
maxHeap.add(10);
expect(maxHeap.peek()).toBe(10);
expect(maxHeap.toString()).toBe('10,3,5');
maxHeap.add(1);
expect(maxHeap.peek()).toBe(10);
expect(maxHeap.toString()).toBe('10,3,5,1');
maxHeap.add(1);
expect(maxHeap.peek()).toBe(10);
expect(maxHeap.toString()).toBe('10,3,5,1,1');
expect(maxHeap.poll()).toBe(10);
expect(maxHeap.toString()).toBe('5,3,1,1');
expect(maxHeap.poll()).toBe(5);
expect(maxHeap.toString()).toBe('3,1,1');
expect(maxHeap.poll()).toBe(3);
expect(maxHeap.toString()).toBe('1,1');
});
it('should poll items from the heap and heapify it down', () => {
const maxHeap = new MaxHeap();
maxHeap.add(5);
maxHeap.add(3);
maxHeap.add(10);
maxHeap.add(11);
maxHeap.add(1);
expect(maxHeap.toString()).toBe('11,10,5,3,1');
expect(maxHeap.poll()).toBe(11);
expect(maxHeap.toString()).toBe('10,3,5,1');
expect(maxHeap.poll()).toBe(10);
expect(maxHeap.toString()).toBe('5,3,1');
expect(maxHeap.poll()).toBe(5);
expect(maxHeap.toString()).toBe('3,1');
expect(maxHeap.poll()).toBe(3);
expect(maxHeap.toString()).toBe('1');
expect(maxHeap.poll()).toBe(1);
expect(maxHeap.toString()).toBe('');
expect(maxHeap.poll()).toBe(undefined);
expect(maxHeap.toString()).toBe('');
});
it('should heapify down through the right branch as well', () => {
const maxHeap = new MaxHeap();
maxHeap.add(3);
maxHeap.add(12);
maxHeap.add(10);
expect(maxHeap.toString()).toBe('12,3,10');
maxHeap.add(11);
expect(maxHeap.toString()).toBe('12,11,10,3');
expect(maxHeap.poll()).toBe(12);
expect(maxHeap.toString()).toBe('11,3,10');
});
});

View File

@ -0,0 +1,91 @@
import MinHeapAdhoc from '../MinHeapAdhoc';
describe('MinHeapAdhoc', () => {
it('should create an empty min heap', () => {
const minHeap = new MinHeapAdhoc();
expect(minHeap).toBeDefined();
expect(minHeap.peek()).toBe(undefined);
expect(minHeap.isEmpty()).toBe(true);
});
it('should add items to the heap and heapify it up', () => {
const minHeap = new MinHeapAdhoc();
minHeap.add(5);
expect(minHeap.isEmpty()).toBe(false);
expect(minHeap.peek()).toBe(5);
expect(minHeap.toString()).toBe('5');
minHeap.add(3);
expect(minHeap.peek()).toBe(3);
expect(minHeap.toString()).toBe('3,5');
minHeap.add(10);
expect(minHeap.peek()).toBe(3);
expect(minHeap.toString()).toBe('3,5,10');
minHeap.add(1);
expect(minHeap.peek()).toBe(1);
expect(minHeap.toString()).toBe('1,3,10,5');
minHeap.add(1);
expect(minHeap.peek()).toBe(1);
expect(minHeap.toString()).toBe('1,1,10,5,3');
expect(minHeap.poll()).toBe(1);
expect(minHeap.toString()).toBe('1,3,10,5');
expect(minHeap.poll()).toBe(1);
expect(minHeap.toString()).toBe('3,5,10');
expect(minHeap.poll()).toBe(3);
expect(minHeap.toString()).toBe('5,10');
});
it('should poll items from the heap and heapify it down', () => {
const minHeap = new MinHeapAdhoc();
minHeap.add(5);
minHeap.add(3);
minHeap.add(10);
minHeap.add(11);
minHeap.add(1);
expect(minHeap.toString()).toBe('1,3,10,11,5');
expect(minHeap.poll()).toBe(1);
expect(minHeap.toString()).toBe('3,5,10,11');
expect(minHeap.poll()).toBe(3);
expect(minHeap.toString()).toBe('5,11,10');
expect(minHeap.poll()).toBe(5);
expect(minHeap.toString()).toBe('10,11');
expect(minHeap.poll()).toBe(10);
expect(minHeap.toString()).toBe('11');
expect(minHeap.poll()).toBe(11);
expect(minHeap.toString()).toBe('');
expect(minHeap.poll()).toBe(undefined);
expect(minHeap.toString()).toBe('');
});
it('should heapify down through the right branch as well', () => {
const minHeap = new MinHeapAdhoc();
minHeap.add(3);
minHeap.add(12);
minHeap.add(10);
expect(minHeap.toString()).toBe('3,12,10');
minHeap.add(11);
expect(minHeap.toString()).toBe('3,11,10,12');
expect(minHeap.poll()).toBe(3);
expect(minHeap.toString()).toBe('10,11,12');
});
});