Add Knight's tour.

This commit is contained in:
Oleksii Trekhleb 2018-05-17 17:48:06 +03:00
parent d2c6d14acd
commit 476c0acb4a
4 changed files with 190 additions and 0 deletions

View File

@ -80,6 +80,7 @@
* **Uncategorized**
* [Tower of Hanoi](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/uncategorized/hanoi-tower)
* [N-Queens Problem](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/uncategorized/n-queens)
* [Knight's Tour](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/uncategorized/knight-tour)
* Union-Find
* Maze
* Sudoku
@ -114,6 +115,7 @@
* **Backtracking**
* [Hamiltonian Cycle](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/hamiltonian-cycle) - Visit every vertex exactly once
* [N-Queens Problem](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/uncategorized/n-queens)
* [Knight's Tour](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/uncategorized/knight-tour)
* **Branch & Bound**
## How to use this repository

View File

@ -0,0 +1,33 @@
# Knight's Tour
A **knight's tour** is a sequence of moves of a knight on a chessboard
such that the knight visits every square only once. If the knight
ends on a square that is one knight's move from the beginning
square (so that it could tour the board again immediately,
following the same path), the tour is **closed**, otherwise it
is **open**.
The **knight's tour problem** is the mathematical problem of
finding a knight's tour. Creating a program to find a knight's
tour is a common problem given to computer science students.
Variations of the knight's tour problem involve chessboards of
different sizes than the usual `8×8`, as well as irregular
(non-rectangular) boards.
The knight's tour problem is an instance of the more
general **Hamiltonian path problem** in graph theory. The problem of finding
a closed knight's tour is similarly an instance of the Hamiltonian
cycle problem.
![Knight's Tour](https://upload.wikimedia.org/wikipedia/commons/d/da/Knight%27s_tour_anim_2.gif)
An open knight's tour of a chessboard.
![Knight's Tour](https://upload.wikimedia.org/wikipedia/commons/c/ca/Knights-Tour-Animation.gif)
An animation of an open knight's tour on a 5 by 5 board.
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Knight%27s_tour)
- [GeeksForGeeks](https://www.geeksforgeeks.org/backtracking-set-1-the-knights-tour-problem/)

View File

@ -0,0 +1,43 @@
import knightTour from '../knightTour';
describe('knightTour', () => {
it('should not find solution on 3x3 board', () => {
const moves = knightTour(3);
expect(moves.length).toBe(0);
});
it('should find one solution to do knight tour on 5x5 board', () => {
const moves = knightTour(5);
expect(moves.length).toBe(25);
expect(moves).toEqual([
[0, 0],
[1, 2],
[2, 0],
[0, 1],
[1, 3],
[3, 4],
[2, 2],
[4, 1],
[3, 3],
[1, 4],
[0, 2],
[1, 0],
[3, 1],
[4, 3],
[2, 4],
[0, 3],
[1, 1],
[3, 0],
[4, 2],
[2, 1],
[4, 0],
[3, 2],
[4, 4],
[2, 3],
[0, 4],
]);
});
});

View File

@ -0,0 +1,112 @@
/**
* @param {number[][]} chessboard
* @param {number[]} position
* @return {number[][]}
*/
function getPossibleMoves(chessboard, position) {
// Generate all knight moves (event those that goes beyond the board).
const possibleMoves = [
[position[0] - 1, position[1] - 2],
[position[0] - 2, position[1] - 1],
[position[0] + 1, position[1] - 2],
[position[0] + 2, position[1] - 1],
[position[0] - 2, position[1] + 1],
[position[0] - 1, position[1] + 2],
[position[0] + 1, position[1] + 2],
[position[0] + 2, position[1] + 1],
];
// Filter out all moves that go beyond the board.
return possibleMoves.filter((move) => {
const boardSize = chessboard.length;
return move[0] >= 0 && move[1] >= 0 && move[0] < boardSize && move[1] < boardSize;
});
}
/**
* @param {number[][]} chessboard
* @param {number[]} move
* @return {boolean}
*/
function isMoveAllowed(chessboard, move) {
return chessboard[move[0]][move[1]] !== 1;
}
/**
* @param {number[][]} chessboard
* @param {number[][]} moves
* @return {boolean}
*/
function isBoardCompletelyVisited(chessboard, moves) {
const totalPossibleMovesCount = chessboard.length ** 2;
const existingMovesCount = moves.length;
return totalPossibleMovesCount === existingMovesCount;
}
/**
* @param {number[][]} chessboard
* @param {number[][]} moves
* @return {boolean}
*/
function knightTourRecursive(chessboard, moves) {
const currentChessboard = chessboard;
// If board has been completely visited then we've found a solution.
if (isBoardCompletelyVisited(currentChessboard, moves)) {
return true;
}
// Get next possible knight moves.
const lastMove = moves[moves.length - 1];
const possibleMoves = getPossibleMoves(currentChessboard, lastMove);
// Try to do next possible moves.
for (let moveIndex = 0; moveIndex < possibleMoves.length; moveIndex += 1) {
const currentMove = possibleMoves[moveIndex];
// Check if current move is allowed. We aren't allowed to go to
// the same cells twice.
if (isMoveAllowed(currentChessboard, currentMove)) {
// Actually do the move.
moves.push(currentMove);
currentChessboard[currentMove[0]][currentMove[1]] = 1;
// If further moves starting from current are successful then
// return true meaning the solution is found.
if (knightTourRecursive(currentChessboard, moves)) {
return true;
}
// BACKTRACKING.
// If current move was unsuccessful then step back and try to do another move.
moves.pop();
currentChessboard[currentMove[0]][currentMove[1]] = 0;
}
}
// Return false if we haven't found solution.
return false;
}
/**
* @param {number} chessboardSize
* @return {number[][]}
*/
export default function knightTour(chessboardSize) {
// Init chessboard.
const chessboard = Array(chessboardSize).fill(null).map(() => Array(chessboardSize).fill(0));
// Init moves array.
const moves = [];
// Do first move and place the knight to the 0x0 cell.
const firstMove = [0, 0];
moves.push(firstMove);
chessboard[firstMove[0]][firstMove[0]] = 1;
// Recursively try to do the next move.
const solutionWasFound = knightTourRecursive(chessboard, moves);
return solutionWasFound ? moves : [];
}