mirror of
https://github.moeyy.xyz/https://github.com/trekhleb/javascript-algorithms.git
synced 2024-11-10 11:09:43 +08:00
Add integer partition.
This commit is contained in:
parent
8895d20e70
commit
542f2ad2bd
@ -31,6 +31,7 @@
|
||||
* [Primality Test](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/primality-test) (trial division method)
|
||||
* [Euclidean Algorithm](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/euclidean-algorithm) - calculate the Greatest Common Divisor (GCD)
|
||||
* [Least Common Multiple](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/least-common-multiple) (LCM)
|
||||
* [Integer Partition](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/integer-partition)
|
||||
* **Sets**
|
||||
* [Cartesian Product](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/cartesian-product) - product of multiple sets
|
||||
* [Power Set](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/power-set) - all subsets of the set
|
||||
@ -98,9 +99,9 @@
|
||||
* [Longest Increasing subsequence](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/longest-increasing-subsequence)
|
||||
* [Shortest Common Supersequence](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/shortest-common-supersequence)
|
||||
* [0/1 Knapsack Problem](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/knapsack-problem)
|
||||
* [Integer Partition](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/integer-partition)
|
||||
* Maximum subarray
|
||||
* Maximum sum path
|
||||
* Integer Partition
|
||||
* **Backtracking**
|
||||
* **Branch & Bound**
|
||||
|
||||
|
33
src/algorithms/math/integer-partition/README.md
Normal file
33
src/algorithms/math/integer-partition/README.md
Normal file
@ -0,0 +1,33 @@
|
||||
# Integer Partition
|
||||
|
||||
In number theory and combinatorics, a partition of a positive
|
||||
integer `n`, also called an **integer partition**, is a way of
|
||||
writing `n` as a sum of positive integers.
|
||||
|
||||
Two sums that differ only in the order of their summands are
|
||||
considered the same partition. For example, `4` can be partitioned
|
||||
in five distinct ways:
|
||||
|
||||
```
|
||||
4
|
||||
3 + 1
|
||||
2 + 2
|
||||
2 + 1 + 1
|
||||
1 + 1 + 1 + 1
|
||||
```
|
||||
|
||||
The order-dependent composition `1 + 3` is the same partition
|
||||
as `3 + 1`, while the two distinct
|
||||
compositions `1 + 2 + 1` and `1 + 1 + 2` represent the same
|
||||
partition `2 + 1 + 1`.
|
||||
|
||||
Young diagrams associated to the partitions of the positive
|
||||
integers `1` through `8`. They are arranged so that images
|
||||
under the reflection about the main diagonal of the square
|
||||
are conjugate partitions.
|
||||
|
||||
![Integer Partition](https://upload.wikimedia.org/wikipedia/commons/d/d8/Ferrer_partitioning_diagrams.svg)
|
||||
|
||||
## References
|
||||
|
||||
- [Wikipedia](https://en.wikipedia.org/wiki/Partition_(number_theory))
|
@ -0,0 +1,11 @@
|
||||
import integerPartition from '../integerPartition';
|
||||
|
||||
describe('integerPartition', () => {
|
||||
it('should partition the number', () => {
|
||||
expect(integerPartition(1)).toBe(1);
|
||||
expect(integerPartition(2)).toBe(2);
|
||||
expect(integerPartition(3)).toBe(3);
|
||||
expect(integerPartition(4)).toBe(5);
|
||||
expect(integerPartition(8)).toBe(22);
|
||||
});
|
||||
});
|
47
src/algorithms/math/integer-partition/integerPartition.js
Normal file
47
src/algorithms/math/integer-partition/integerPartition.js
Normal file
@ -0,0 +1,47 @@
|
||||
/**
|
||||
* @param {Number} number
|
||||
*/
|
||||
export default function integerPartition(number) {
|
||||
// Create partition matrix for solving this task using Dynamic Programming.
|
||||
const partitionMatrix = Array(number + 1).fill(null).map(() => {
|
||||
return Array(number + 1).fill(null);
|
||||
});
|
||||
|
||||
// Fill partition matrix with initial values.
|
||||
|
||||
// Let's fill the first row that represents how many ways we would have
|
||||
// to combine the numbers 1, 2, 3, ..., n with number 0. We would have zero
|
||||
// ways obviously since with zero number we may form only zero.
|
||||
for (let numberIndex = 1; numberIndex <= number; numberIndex += 1) {
|
||||
partitionMatrix[0][numberIndex] = 0;
|
||||
}
|
||||
|
||||
// Let's fill the first row. It represents the number of way of how we can form
|
||||
// number zero out of numbers 0, 1, 2, ... Obviously there is only one way we could
|
||||
// form number 0 and it is with number 0 itself.
|
||||
for (let summandIndex = 0; summandIndex <= number; summandIndex += 1) {
|
||||
partitionMatrix[summandIndex][0] = 1;
|
||||
}
|
||||
|
||||
// Now let's go through other possible options of how we could form number m out of
|
||||
// summands 0, 1, ..., m using Dynamic Programming approach.
|
||||
for (let summandIndex = 1; summandIndex <= number; summandIndex += 1) {
|
||||
for (let numberIndex = 1; numberIndex <= number; numberIndex += 1) {
|
||||
if (summandIndex > numberIndex) {
|
||||
// If summand number is bigger then current number itself then just it won't add
|
||||
// any new ways of forming the number. Thus we may just copy the number from row above.
|
||||
partitionMatrix[summandIndex][numberIndex] = partitionMatrix[summandIndex - 1][numberIndex];
|
||||
} else {
|
||||
// The number of combinations would equal to number of combinations of forming the same
|
||||
// number but WITHOUT current summand number plus number of combinations of forming the
|
||||
// previous number but WITH current summand.
|
||||
const combosWithoutSummand = partitionMatrix[summandIndex - 1][numberIndex];
|
||||
const combosWithSummand = partitionMatrix[summandIndex][numberIndex - summandIndex];
|
||||
|
||||
partitionMatrix[summandIndex][numberIndex] = combosWithoutSummand + combosWithSummand;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return partitionMatrix[number][number];
|
||||
}
|
Loading…
Reference in New Issue
Block a user