Add integer partition.

This commit is contained in:
Oleksii Trekhleb 2018-04-30 18:00:17 +03:00
parent 8895d20e70
commit 542f2ad2bd
4 changed files with 93 additions and 1 deletions

View File

@ -31,6 +31,7 @@
* [Primality Test](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/primality-test) (trial division method)
* [Euclidean Algorithm](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/euclidean-algorithm) - calculate the Greatest Common Divisor (GCD)
* [Least Common Multiple](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/least-common-multiple) (LCM)
* [Integer Partition](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/integer-partition)
* **Sets**
* [Cartesian Product](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/cartesian-product) - product of multiple sets
* [Power Set](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/power-set) - all subsets of the set
@ -98,9 +99,9 @@
* [Longest Increasing subsequence](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/longest-increasing-subsequence)
* [Shortest Common Supersequence](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/shortest-common-supersequence)
* [0/1 Knapsack Problem](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/knapsack-problem)
* [Integer Partition](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/integer-partition)
* Maximum subarray
* Maximum sum path
* Integer Partition
* **Backtracking**
* **Branch & Bound**

View File

@ -0,0 +1,33 @@
# Integer Partition
In number theory and combinatorics, a partition of a positive
integer `n`, also called an **integer partition**, is a way of
writing `n` as a sum of positive integers.
Two sums that differ only in the order of their summands are
considered the same partition. For example, `4` can be partitioned
in five distinct ways:
```
4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1
```
The order-dependent composition `1 + 3` is the same partition
as `3 + 1`, while the two distinct
compositions `1 + 2 + 1` and `1 + 1 + 2` represent the same
partition `2 + 1 + 1`.
Young diagrams associated to the partitions of the positive
integers `1` through `8`. They are arranged so that images
under the reflection about the main diagonal of the square
are conjugate partitions.
![Integer Partition](https://upload.wikimedia.org/wikipedia/commons/d/d8/Ferrer_partitioning_diagrams.svg)
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Partition_(number_theory))

View File

@ -0,0 +1,11 @@
import integerPartition from '../integerPartition';
describe('integerPartition', () => {
it('should partition the number', () => {
expect(integerPartition(1)).toBe(1);
expect(integerPartition(2)).toBe(2);
expect(integerPartition(3)).toBe(3);
expect(integerPartition(4)).toBe(5);
expect(integerPartition(8)).toBe(22);
});
});

View File

@ -0,0 +1,47 @@
/**
* @param {Number} number
*/
export default function integerPartition(number) {
// Create partition matrix for solving this task using Dynamic Programming.
const partitionMatrix = Array(number + 1).fill(null).map(() => {
return Array(number + 1).fill(null);
});
// Fill partition matrix with initial values.
// Let's fill the first row that represents how many ways we would have
// to combine the numbers 1, 2, 3, ..., n with number 0. We would have zero
// ways obviously since with zero number we may form only zero.
for (let numberIndex = 1; numberIndex <= number; numberIndex += 1) {
partitionMatrix[0][numberIndex] = 0;
}
// Let's fill the first row. It represents the number of way of how we can form
// number zero out of numbers 0, 1, 2, ... Obviously there is only one way we could
// form number 0 and it is with number 0 itself.
for (let summandIndex = 0; summandIndex <= number; summandIndex += 1) {
partitionMatrix[summandIndex][0] = 1;
}
// Now let's go through other possible options of how we could form number m out of
// summands 0, 1, ..., m using Dynamic Programming approach.
for (let summandIndex = 1; summandIndex <= number; summandIndex += 1) {
for (let numberIndex = 1; numberIndex <= number; numberIndex += 1) {
if (summandIndex > numberIndex) {
// If summand number is bigger then current number itself then just it won't add
// any new ways of forming the number. Thus we may just copy the number from row above.
partitionMatrix[summandIndex][numberIndex] = partitionMatrix[summandIndex - 1][numberIndex];
} else {
// The number of combinations would equal to number of combinations of forming the same
// number but WITHOUT current summand number plus number of combinations of forming the
// previous number but WITH current summand.
const combosWithoutSummand = partitionMatrix[summandIndex - 1][numberIndex];
const combosWithSummand = partitionMatrix[summandIndex][numberIndex - summandIndex];
partitionMatrix[summandIndex][numberIndex] = combosWithoutSummand + combosWithSummand;
}
}
}
return partitionMatrix[number][number];
}