mirror of
https://github.moeyy.xyz/https://github.com/trekhleb/javascript-algorithms.git
synced 2024-11-10 11:09:43 +08:00
Merge c277288598
into 2c67b48c21
This commit is contained in:
commit
5bc61e2d29
16
src/algorithms/search/exponential-search/README.md
Normal file
16
src/algorithms/search/exponential-search/README.md
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
# Exponential Search
|
||||||
|
|
||||||
|
In computer science, an exponential search is an algorithm.There are numerous ways to implement this with the most common being to determine a range that the search key
|
||||||
|
resides in and performing a binary search within that range. This takes O(log i) where i is the position of the search key in the list, if the search key is in the list,
|
||||||
|
or the position where the search key should be, if the search key is not in the list.Exponential search can also be used to search in bounded lists. Exponential search
|
||||||
|
can even out-perform more traditional searches for bounded lists, such as binary search, when the element being searched for is near the beginning of the array.
|
||||||
|
|
||||||
|
![Exponential Search](https://upload.wikimedia.org/wikipedia/commons/4/45/Exponential_search.svg)
|
||||||
|
|
||||||
|
## Complexity
|
||||||
|
|
||||||
|
**Time Complexity**: `O(log i)` - i is the index of the element being searched for in the list
|
||||||
|
|
||||||
|
## References
|
||||||
|
|
||||||
|
-[Wikipedia](https://en.wikipedia.org/wiki/Exponential_search)
|
@ -0,0 +1,35 @@
|
|||||||
|
import exponentialSearch from '../exponentialSearch';
|
||||||
|
|
||||||
|
describe('exponentialSearch', () => {
|
||||||
|
it('should search number in sorted array', () => {
|
||||||
|
expect(exponentialSearch([], 1)).toBe(-1);
|
||||||
|
expect(exponentialSearch([1], 1)).toBe(0);
|
||||||
|
expect(exponentialSearch([1, 2], 1)).toBe(0);
|
||||||
|
expect(exponentialSearch([1, 2], 2)).toBe(1);
|
||||||
|
expect(exponentialSearch([1, 5, 10, 12], 1)).toBe(0);
|
||||||
|
expect(exponentialSearch([1, 5, 10, 12, 14, 17, 22, 100], 17)).toBe(5);
|
||||||
|
expect(exponentialSearch([1, 5, 10, 12, 14, 17, 22, 100], 1)).toBe(0);
|
||||||
|
expect(exponentialSearch([1, 5, 10, 12, 14, 17, 22, 100], 100)).toBe(7);
|
||||||
|
expect(exponentialSearch([1, 5, 10, 12, 14, 17, 22, 100], 0)).toBe(-1);
|
||||||
|
});
|
||||||
|
|
||||||
|
it('should search object in sorted array', () => {
|
||||||
|
const sortedArrayOfObjects = [
|
||||||
|
{ key: 1, value: 'value1' },
|
||||||
|
{ key: 2, value: 'value2' },
|
||||||
|
{ key: 3, value: 'value3' },
|
||||||
|
{ key: 4, value: 'value4' },
|
||||||
|
];
|
||||||
|
|
||||||
|
const comparator = (a, b) => {
|
||||||
|
if (a.key === b.key) return 0;
|
||||||
|
return a.key < b.key ? -1 : 1;
|
||||||
|
};
|
||||||
|
|
||||||
|
expect(exponentialSearch([], { key: 1 }, comparator)).toBe(-1);
|
||||||
|
expect(exponentialSearch(sortedArrayOfObjects, { key: 4 }, comparator)).toBe(3);
|
||||||
|
expect(exponentialSearch(sortedArrayOfObjects, { key: 1 }, comparator)).toBe(0);
|
||||||
|
expect(exponentialSearch(sortedArrayOfObjects, { key: 2 }, comparator)).toBe(1);
|
||||||
|
expect(exponentialSearch(sortedArrayOfObjects, { key: 3 }, comparator)).toBe(2);
|
||||||
|
});
|
||||||
|
});
|
@ -0,0 +1,56 @@
|
|||||||
|
import Comparator from '../../../utils/comparator/Comparator';
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Binary search implementation.
|
||||||
|
*
|
||||||
|
* @param {*[]} sortedArray
|
||||||
|
* @param {*} startIndex
|
||||||
|
* @param {*} endIndex
|
||||||
|
* @param {*} seekElement
|
||||||
|
* @param {function(a, b)} [comparatorCallback]
|
||||||
|
* @return {number}
|
||||||
|
*/
|
||||||
|
|
||||||
|
function binarySearch(sortedArray, startIndex, endIndex, seekElement, comparatorCallback) {
|
||||||
|
const comparator = new Comparator(comparatorCallback);
|
||||||
|
if (endIndex >= startIndex) {
|
||||||
|
const middleIndex = startIndex + Math.floor((endIndex - startIndex) / 2);
|
||||||
|
// If the element is present at the middle itself
|
||||||
|
if (comparator.equal(sortedArray[middleIndex], seekElement)) {
|
||||||
|
return middleIndex;
|
||||||
|
}
|
||||||
|
// If element is smaller than middleIndex, then it can only be present n left subarray
|
||||||
|
if (comparator.greaterThan(sortedArray[middleIndex], seekElement)) {
|
||||||
|
return binarySearch(sortedArray, startIndex, middleIndex - 1, seekElement, comparatorCallback);
|
||||||
|
}
|
||||||
|
// Else the element can only be present in right subarray
|
||||||
|
return binarySearch(sortedArray, middleIndex + 1, endIndex, seekElement, comparatorCallback);
|
||||||
|
}
|
||||||
|
// We reach here when element is not present in array
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
/**
|
||||||
|
* Exponential search implementation.
|
||||||
|
*
|
||||||
|
* @param {*[]} sortedArray
|
||||||
|
* @param {*} seekElement
|
||||||
|
* @param {function(a, b)} [comparatorCallback]
|
||||||
|
* @return {number}
|
||||||
|
*/
|
||||||
|
export default function exponentialSearch(sortedArray, seekElement, comparatorCallback) {
|
||||||
|
const comparator = new Comparator(comparatorCallback);
|
||||||
|
const length = sortedArray.length;
|
||||||
|
// If element is present at first location itself
|
||||||
|
if (sortedArray.length !== 0) {
|
||||||
|
if (comparator.equal(sortedArray[0], seekElement)){
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Find range for binary search by repeated doubling
|
||||||
|
let range = 1;
|
||||||
|
while (range < length && comparator.lessThanOrEqual(sortedArray[range], seekElement)) {
|
||||||
|
range *= 2;
|
||||||
|
}
|
||||||
|
// Call binary search for the found range.
|
||||||
|
return binarySearch(sortedArray, range/2, Math.min(range, length - 1), seekElement, comparatorCallback);
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user