mirror of
https://github.moeyy.xyz/https://github.com/trekhleb/javascript-algorithms.git
synced 2024-11-10 11:09:43 +08:00
Add Tarjan's algorithm.
This commit is contained in:
parent
5f50bd9bb2
commit
5f3588ee59
@ -72,7 +72,8 @@
|
||||
* [Prim’s Algorithm](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/prim) - finding Minimum Spanning Tree (MST) for weighted undirected graph
|
||||
* [Kruskal’s Algorithm](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/kruskal) - finding Minimum Spanning Tree (MST) for weighted undirected graph
|
||||
* [Topological Sorting](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/topological-sorting) - DFS method
|
||||
* Eulerian path, Eulerian circuit
|
||||
* [Articulation Points](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/articulation-points) - Tarjan's algorithm
|
||||
* [Eulerian Path and Eulerian Circuit](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/eulerian-path)
|
||||
* Strongly Connected Component algorithm
|
||||
* Shortest Path Faster Algorithm (SPFA)
|
||||
* **Uncategorized**
|
||||
|
22
src/algorithms/graph/articulation-points/README.md
Normal file
22
src/algorithms/graph/articulation-points/README.md
Normal file
@ -0,0 +1,22 @@
|
||||
# Articulation Points (or Cut Vertices)
|
||||
|
||||
A vertex in an undirected connected graph is an articulation point
|
||||
(or cut vertex) iff removing it (and edges through it) disconnects
|
||||
the graph. Articulation points represent vulnerabilities in a
|
||||
connected network – single points whose failure would split the
|
||||
network into 2 or more disconnected components. They are useful for
|
||||
designing reliable networks.
|
||||
|
||||
For a disconnected undirected graph, an articulation point is a
|
||||
vertex removing which increases number of connected components.
|
||||
|
||||
![Articulation Points](https://www.geeksforgeeks.org/wp-content/uploads/ArticulationPoints.png)
|
||||
|
||||
![Articulation Points](https://www.geeksforgeeks.org/wp-content/uploads/ArticulationPoints1.png)
|
||||
|
||||
![Articulation Points](https://www.geeksforgeeks.org/wp-content/uploads/ArticulationPoints21.png)
|
||||
|
||||
## References
|
||||
|
||||
- [GeeksForGeeks](https://www.geeksforgeeks.org/articulation-points-or-cut-vertices-in-a-graph/)
|
||||
- [YouTube](https://www.youtube.com/watch?v=2kREIkF9UAs)
|
@ -0,0 +1,143 @@
|
||||
import GraphVertex from '../../../../data-structures/graph/GraphVertex';
|
||||
import GraphEdge from '../../../../data-structures/graph/GraphEdge';
|
||||
import Graph from '../../../../data-structures/graph/Graph';
|
||||
import articulationPoints from '../articulationPoints';
|
||||
|
||||
describe('articulationPoints', () => {
|
||||
it('should find articulation points in simple graph', () => {
|
||||
const vertexA = new GraphVertex('A');
|
||||
const vertexB = new GraphVertex('B');
|
||||
const vertexC = new GraphVertex('C');
|
||||
const vertexD = new GraphVertex('D');
|
||||
|
||||
const edgeAB = new GraphEdge(vertexA, vertexB);
|
||||
const edgeBC = new GraphEdge(vertexB, vertexC);
|
||||
const edgeCD = new GraphEdge(vertexC, vertexD);
|
||||
|
||||
const graph = new Graph();
|
||||
|
||||
graph
|
||||
.addEdge(edgeAB)
|
||||
.addEdge(edgeBC)
|
||||
.addEdge(edgeCD);
|
||||
|
||||
const articulationPointsSet = articulationPoints(graph);
|
||||
|
||||
expect(articulationPointsSet).toEqual([
|
||||
vertexC,
|
||||
vertexB,
|
||||
]);
|
||||
});
|
||||
|
||||
it('should find articulation points in simple graph with back edge', () => {
|
||||
const vertexA = new GraphVertex('A');
|
||||
const vertexB = new GraphVertex('B');
|
||||
const vertexC = new GraphVertex('C');
|
||||
const vertexD = new GraphVertex('D');
|
||||
|
||||
const edgeAB = new GraphEdge(vertexA, vertexB);
|
||||
const edgeBC = new GraphEdge(vertexB, vertexC);
|
||||
const edgeCD = new GraphEdge(vertexC, vertexD);
|
||||
const edgeAC = new GraphEdge(vertexA, vertexC);
|
||||
|
||||
const graph = new Graph();
|
||||
|
||||
graph
|
||||
.addEdge(edgeAB)
|
||||
.addEdge(edgeAC)
|
||||
.addEdge(edgeBC)
|
||||
.addEdge(edgeCD);
|
||||
|
||||
const articulationPointsSet = articulationPoints(graph);
|
||||
|
||||
expect(articulationPointsSet).toEqual([
|
||||
vertexC,
|
||||
]);
|
||||
});
|
||||
|
||||
it('should find articulation points in graph', () => {
|
||||
const vertexA = new GraphVertex('A');
|
||||
const vertexB = new GraphVertex('B');
|
||||
const vertexC = new GraphVertex('C');
|
||||
const vertexD = new GraphVertex('D');
|
||||
const vertexE = new GraphVertex('E');
|
||||
const vertexF = new GraphVertex('F');
|
||||
const vertexG = new GraphVertex('G');
|
||||
const vertexH = new GraphVertex('H');
|
||||
|
||||
const edgeAB = new GraphEdge(vertexA, vertexB);
|
||||
const edgeBC = new GraphEdge(vertexB, vertexC);
|
||||
const edgeAC = new GraphEdge(vertexA, vertexC);
|
||||
const edgeCD = new GraphEdge(vertexC, vertexD);
|
||||
const edgeDE = new GraphEdge(vertexD, vertexE);
|
||||
const edgeEG = new GraphEdge(vertexE, vertexG);
|
||||
const edgeEF = new GraphEdge(vertexE, vertexF);
|
||||
const edgeGF = new GraphEdge(vertexG, vertexF);
|
||||
const edgeFH = new GraphEdge(vertexF, vertexH);
|
||||
|
||||
const graph = new Graph();
|
||||
|
||||
graph
|
||||
.addEdge(edgeAB)
|
||||
.addEdge(edgeBC)
|
||||
.addEdge(edgeAC)
|
||||
.addEdge(edgeCD)
|
||||
.addEdge(edgeDE)
|
||||
.addEdge(edgeEG)
|
||||
.addEdge(edgeEF)
|
||||
.addEdge(edgeGF)
|
||||
.addEdge(edgeFH);
|
||||
|
||||
const articulationPointsSet = articulationPoints(graph);
|
||||
|
||||
expect(articulationPointsSet).toEqual([
|
||||
vertexF,
|
||||
vertexE,
|
||||
vertexD,
|
||||
vertexC,
|
||||
]);
|
||||
});
|
||||
|
||||
it('should find articulation points in graph starting with articulation root vertex', () => {
|
||||
const vertexA = new GraphVertex('A');
|
||||
const vertexB = new GraphVertex('B');
|
||||
const vertexC = new GraphVertex('C');
|
||||
const vertexD = new GraphVertex('D');
|
||||
const vertexE = new GraphVertex('E');
|
||||
const vertexF = new GraphVertex('F');
|
||||
const vertexG = new GraphVertex('G');
|
||||
const vertexH = new GraphVertex('H');
|
||||
|
||||
const edgeAB = new GraphEdge(vertexA, vertexB);
|
||||
const edgeBC = new GraphEdge(vertexB, vertexC);
|
||||
const edgeAC = new GraphEdge(vertexA, vertexC);
|
||||
const edgeCD = new GraphEdge(vertexC, vertexD);
|
||||
const edgeDE = new GraphEdge(vertexD, vertexE);
|
||||
const edgeEG = new GraphEdge(vertexE, vertexG);
|
||||
const edgeEF = new GraphEdge(vertexE, vertexF);
|
||||
const edgeGF = new GraphEdge(vertexG, vertexF);
|
||||
const edgeFH = new GraphEdge(vertexF, vertexH);
|
||||
|
||||
const graph = new Graph();
|
||||
|
||||
graph
|
||||
.addEdge(edgeDE)
|
||||
.addEdge(edgeAB)
|
||||
.addEdge(edgeBC)
|
||||
.addEdge(edgeAC)
|
||||
.addEdge(edgeCD)
|
||||
.addEdge(edgeEG)
|
||||
.addEdge(edgeEF)
|
||||
.addEdge(edgeGF)
|
||||
.addEdge(edgeFH);
|
||||
|
||||
const articulationPointsSet = articulationPoints(graph);
|
||||
|
||||
expect(articulationPointsSet).toEqual([
|
||||
vertexF,
|
||||
vertexE,
|
||||
vertexC,
|
||||
vertexD,
|
||||
]);
|
||||
});
|
||||
});
|
116
src/algorithms/graph/articulation-points/articulationPoints.js
Normal file
116
src/algorithms/graph/articulation-points/articulationPoints.js
Normal file
@ -0,0 +1,116 @@
|
||||
import depthFirstSearch from '../depth-first-search/depthFirstSearch';
|
||||
|
||||
/**
|
||||
* Helper class for visited vertex metadata.
|
||||
*/
|
||||
class VisitMetadata {
|
||||
constructor({ discoveryTime, lowDiscoveryTime }) {
|
||||
this.discoveryTime = discoveryTime;
|
||||
this.lowDiscoveryTime = lowDiscoveryTime;
|
||||
|
||||
// We need this to know to which vertex we need to compare discovery time
|
||||
// when leaving the vertex.
|
||||
this.childVertex = null;
|
||||
|
||||
// We need this in order to check graph root node, whether it has two
|
||||
// disconnected children or not.
|
||||
this.childrenCount = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Tarjan's algorithm for rinding articulation points in graph.
|
||||
*
|
||||
* @param {Graph} graph
|
||||
* @return {GraphVertex[]}
|
||||
*/
|
||||
export default function articulationPoints(graph) {
|
||||
// Set of vertices we've already visited during DFS.
|
||||
const visitedSet = {};
|
||||
|
||||
// Set of articulation points found so far.
|
||||
const articulationPointsSet = [];
|
||||
|
||||
// Time needed to get to the current vertex.
|
||||
let discoveryTime = 0;
|
||||
|
||||
// Peek the start vertex for DFS traversal.
|
||||
const startVertex = graph.getAllVertices()[0];
|
||||
|
||||
const dfsCallbacks = {
|
||||
/**
|
||||
* @param {GraphVertex} currentVertex
|
||||
* @param {GraphVertex} previousVertex
|
||||
*/
|
||||
enterVertex: ({ currentVertex, previousVertex }) => {
|
||||
// Put current vertex to visited set.
|
||||
visitedSet[currentVertex.getKey()] = new VisitMetadata({
|
||||
discoveryTime,
|
||||
lowDiscoveryTime: discoveryTime,
|
||||
});
|
||||
|
||||
// Tick discovery time.
|
||||
discoveryTime += 1;
|
||||
|
||||
if (previousVertex) {
|
||||
// Update child vertex information for previous vertex.
|
||||
visitedSet[previousVertex.getKey()].childVertex = currentVertex;
|
||||
|
||||
// Update children counter for previous vertex.
|
||||
visitedSet[previousVertex.getKey()].childrenCount += 1;
|
||||
}
|
||||
},
|
||||
/**
|
||||
* @param {GraphVertex} currentVertex
|
||||
* @param {GraphVertex} previousVertex
|
||||
*/
|
||||
leaveVertex: ({ currentVertex }) => {
|
||||
// Detect whether current vertex is articulation point or not.
|
||||
// To do so we need to check two (OR) conditions:
|
||||
// 1. Is it a root vertex with at least two independent children.
|
||||
// 2. If its visited time is <= low time of adjacent vertex.
|
||||
if (currentVertex === startVertex) {
|
||||
// Check that it has at least two independent children.
|
||||
if (visitedSet[currentVertex.getKey()].childrenCount >= 2) {
|
||||
articulationPointsSet.push(currentVertex);
|
||||
}
|
||||
} else {
|
||||
// Get child vertex low discovery time.
|
||||
let childVertexLowDiscoveryTime = null;
|
||||
if (visitedSet[currentVertex.getKey()].childVertex) {
|
||||
const childVertexKey = visitedSet[currentVertex.getKey()].childVertex.getKey();
|
||||
childVertexLowDiscoveryTime = visitedSet[childVertexKey].lowDiscoveryTime;
|
||||
}
|
||||
|
||||
// Compare child vertex low discovery time with current discovery time to if there
|
||||
// are any short path (back edge) exists. If we can get to child vertex faster then
|
||||
// to current one it means that there is a back edge exists (short path) and current
|
||||
// vertex isn't articulation point.
|
||||
const currentDiscoveryTime = visitedSet[currentVertex.getKey()].discoveryTime;
|
||||
if (currentDiscoveryTime <= childVertexLowDiscoveryTime) {
|
||||
articulationPointsSet.push(currentVertex);
|
||||
}
|
||||
|
||||
// Update the low time with the smallest time of adjacent vertices.
|
||||
|
||||
// Get minimum low discovery time from all neighbors.
|
||||
/** @param {GraphVertex} neighbor */
|
||||
visitedSet[currentVertex.getKey()].lowDiscoveryTime = currentVertex.getNeighbors().reduce(
|
||||
(lowestDiscoveryTime, neighbor) => {
|
||||
const neighborLowTime = visitedSet[neighbor.getKey()].lowDiscoveryTime;
|
||||
return neighborLowTime < lowestDiscoveryTime ? neighborLowTime : lowestDiscoveryTime;
|
||||
},
|
||||
visitedSet[currentVertex.getKey()].lowDiscoveryTime,
|
||||
);
|
||||
}
|
||||
},
|
||||
allowTraversal: ({ nextVertex }) => {
|
||||
return !visitedSet[nextVertex.getKey()];
|
||||
},
|
||||
};
|
||||
|
||||
// Do Depth First Search traversal over submitted graph.
|
||||
depthFirstSearch(graph, startVertex, dfsCallbacks);
|
||||
|
||||
return articulationPointsSet;
|
||||
}
|
34
src/algorithms/graph/eulerian-path/README.md
Normal file
34
src/algorithms/graph/eulerian-path/README.md
Normal file
@ -0,0 +1,34 @@
|
||||
# Eulerian Path
|
||||
|
||||
In graph theory, an **Eulerian trail** (or **Eulerian path**) is a
|
||||
trail in a finite graph which visits every edge exactly once.
|
||||
Similarly, an **Eulerian circuit** or **Eulerian cycle** is an
|
||||
Eulerian trail which starts and ends on the same vertex.
|
||||
|
||||
Euler proved that a necessary condition for the existence of Eulerian
|
||||
circuits is that all vertices in the graph have an even degree, and
|
||||
stated that connected graphs with all vertices of even degree have
|
||||
an Eulerian circuit.
|
||||
|
||||
![Eulerian Circuit](https://upload.wikimedia.org/wikipedia/commons/7/72/Labelled_Eulergraph.svg)
|
||||
|
||||
Every vertex of this graph has an even degree. Therefore, this is
|
||||
an Eulerian graph. Following the edges in alphabetical order gives
|
||||
an Eulerian circuit/cycle.
|
||||
|
||||
For the existence of Eulerian trails it is necessary that zero or
|
||||
two vertices have an odd degree; this means the Königsberg graph
|
||||
is not Eulerian. If there are no vertices of odd degree,
|
||||
all Eulerian trails are circuits. If there are exactly two vertices
|
||||
of odd degree, all Eulerian trails start at one of them and end at
|
||||
the other. A graph that has an Eulerian trail but not an Eulerian
|
||||
circuit is called semi-Eulerian.
|
||||
|
||||
![Königsberg graph](https://upload.wikimedia.org/wikipedia/commons/9/96/K%C3%B6nigsberg_graph.svg)
|
||||
|
||||
The Königsberg Bridges multigraph. This multigraph is not Eulerian,
|
||||
therefore, a solution does not exist.
|
||||
|
||||
## References
|
||||
|
||||
- [Wikipedia](https://en.wikipedia.org/wiki/Eulerian_path)
|
Loading…
Reference in New Issue
Block a user