This commit is contained in:
Oleksii Trekhleb 2018-04-11 15:57:41 +03:00
parent 62d9747495
commit 6f9600aaa7
5 changed files with 189 additions and 9 deletions

View File

@ -27,6 +27,7 @@
* [String Permutations](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/string/permutations)
* Graph
* [Depth-First Search (DFS)](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/depth-first-search)
* [Breadth-First Search (BFS)](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/graph/breadth-first-search)
## Useful Links

View File

@ -0,0 +1,7 @@
# Breadth-First Search (BFS)
Breadth-first search (BFS) is an algorithm for traversing
or searching tree or graph data structures. It starts at
the tree root (or some arbitrary node of a graph, sometimes
referred to as a 'search key') and explores the neighbor
nodes first, before moving to the next level neighbors.

View File

@ -0,0 +1,114 @@
import Graph from '../../../../data-structures/graph/Graph';
import GraphVertex from '../../../../data-structures/graph/GraphVertex';
import GraphEdge from '../../../../data-structures/graph/GraphEdge';
import breadthFirstSearch from '../breadthFirstSearch';
describe('breadthFirstSearch', () => {
it('should perform BFS operation on graph', () => {
const graph = new Graph(true);
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const vertexE = new GraphVertex('E');
const vertexF = new GraphVertex('F');
const vertexG = new GraphVertex('G');
const vertexH = new GraphVertex('H');
const edgeAB = new GraphEdge(vertexA, vertexB);
const edgeBC = new GraphEdge(vertexB, vertexC);
const edgeCG = new GraphEdge(vertexC, vertexG);
const edgeAD = new GraphEdge(vertexA, vertexD);
const edgeAE = new GraphEdge(vertexA, vertexE);
const edgeEF = new GraphEdge(vertexE, vertexF);
const edgeFD = new GraphEdge(vertexF, vertexD);
const edgeDH = new GraphEdge(vertexD, vertexH);
const edgeGH = new GraphEdge(vertexG, vertexH);
graph
.addEdge(edgeAB)
.addEdge(edgeBC)
.addEdge(edgeCG)
.addEdge(edgeAD)
.addEdge(edgeAE)
.addEdge(edgeEF)
.addEdge(edgeFD)
.addEdge(edgeDH)
.addEdge(edgeGH);
expect(graph.toString()).toBe('A,B,C,G,D,E,F,H');
const enterVertexCallback = jest.fn();
const leaveVertexCallback = jest.fn();
// Traverse graphs without callbacks first.
breadthFirstSearch(graph, vertexA);
// Traverse graph with enterVertex and leaveVertex callbacks.
breadthFirstSearch(graph, vertexA, {
enterVertex: enterVertexCallback,
leaveVertex: leaveVertexCallback,
});
expect(enterVertexCallback).toHaveBeenCalledTimes(8);
expect(leaveVertexCallback).toHaveBeenCalledTimes(8);
expect(enterVertexCallback.mock.calls.toString()).toBe('A,B,D,E,C,H,F,G');
expect(leaveVertexCallback.mock.calls.toString()).toBe('A,B,D,E,C,H,F,G');
});
it('should allow to create custom vertex visiting logic', () => {
const graph = new Graph(true);
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const vertexE = new GraphVertex('E');
const vertexF = new GraphVertex('F');
const vertexG = new GraphVertex('G');
const vertexH = new GraphVertex('H');
const edgeAB = new GraphEdge(vertexA, vertexB);
const edgeBC = new GraphEdge(vertexB, vertexC);
const edgeCG = new GraphEdge(vertexC, vertexG);
const edgeAD = new GraphEdge(vertexA, vertexD);
const edgeAE = new GraphEdge(vertexA, vertexE);
const edgeEF = new GraphEdge(vertexE, vertexF);
const edgeFD = new GraphEdge(vertexF, vertexD);
const edgeDH = new GraphEdge(vertexD, vertexH);
const edgeGH = new GraphEdge(vertexG, vertexH);
graph
.addEdge(edgeAB)
.addEdge(edgeBC)
.addEdge(edgeCG)
.addEdge(edgeAD)
.addEdge(edgeAE)
.addEdge(edgeEF)
.addEdge(edgeFD)
.addEdge(edgeDH)
.addEdge(edgeGH);
expect(graph.toString()).toBe('A,B,C,G,D,E,F,H');
const enterVertexCallback = jest.fn();
const leaveVertexCallback = jest.fn();
// Traverse graph with enterVertex and leaveVertex callbacks.
breadthFirstSearch(graph, vertexA, {
enterVertex: enterVertexCallback,
leaveVertex: leaveVertexCallback,
allowTraversal: (vertex, neighbor) => {
return !(vertex === vertexA && neighbor === vertexB);
},
});
expect(enterVertexCallback).toHaveBeenCalledTimes(7);
expect(leaveVertexCallback).toHaveBeenCalledTimes(7);
expect(enterVertexCallback.mock.calls.toString()).toBe('A,D,E,H,F,D,H');
expect(leaveVertexCallback.mock.calls.toString()).toBe('A,D,E,H,F,D,H');
});
});

View File

@ -0,0 +1,67 @@
import Queue from '../../../data-structures/queue/Queue';
/**
* @typedef {Object} Callbacks
* @property {function(vertex: GraphVertex, neighbor: GraphVertex): boolean} allowTraversal -
* Determines whether DFS should traverse from the vertex to its neighbor
* (along the edge). By default prohibits visiting the same vertex again.
* @property {function(vertex: GraphVertex)} enterVertex - Called when DFS enters the vertex.
* @property {function(vertex: GraphVertex)} leaveVertex - Called when DFS leaves the vertex.
*/
/**
* @param {Callbacks} [callbacks]
* @returns {Callbacks}
*/
function initCallbacks(callbacks = {}) {
const initiatedCallback = callbacks;
const stubCallback = () => {};
const allowTraversalCallback = (
() => {
const seen = {};
return (vertex, neighbor) => {
if (!seen[neighbor.getKey()]) {
seen[neighbor.getKey()] = true;
return true;
}
return false;
};
}
)();
initiatedCallback.allowTraversal = callbacks.allowTraversal || allowTraversalCallback;
initiatedCallback.enterVertex = callbacks.enterVertex || stubCallback;
initiatedCallback.leaveVertex = callbacks.leaveVertex || stubCallback;
return initiatedCallback;
}
/**
* @param {Graph} graph
* @param {GraphVertex} startVertex
* @param {Callbacks} [rawCallbacks]
*/
export default function breadthFirstSearch(graph, startVertex, rawCallbacks) {
const callbacks = initCallbacks(rawCallbacks);
const vertexQueue = new Queue();
// Do initial queue setup.
vertexQueue.enqueue(startVertex);
// Traverse all vertices from the queue.
while (!vertexQueue.isEmpty()) {
const currentVertex = vertexQueue.dequeue();
callbacks.enterVertex(currentVertex);
// Add all neighbors to the queue for future traversals.
graph.getNeighbors(currentVertex).forEach((neighbor) => {
if (callbacks.allowTraversal(currentVertex, neighbor)) {
vertexQueue.enqueue(neighbor);
}
});
callbacks.leaveVertex(currentVertex);
}
}

View File

@ -5,12 +5,3 @@ searching tree or graph data structures. One starts at
the root (selecting some arbitrary node as the root in
the case of a graph) and explores as far as possible
along each branch before backtracking.
## Complexity
* Time: O(|V| + |E|)
* Space: O(|V|)
## References
[Wikipedia](https://en.wikipedia.org/wiki/Depth-first_search)