Add ComplexNumber.

This commit is contained in:
Oleksii Trekhleb 2018-08-11 15:58:19 +03:00
parent 46b13f04fd
commit 70ec623cbf
4 changed files with 380 additions and 0 deletions

View File

@ -68,6 +68,7 @@ a set of rules that precisely define a sequence of operations.
* `B` [Sieve of Eratosthenes](src/algorithms/math/sieve-of-eratosthenes) - finding all prime numbers up to any given limit * `B` [Sieve of Eratosthenes](src/algorithms/math/sieve-of-eratosthenes) - finding all prime numbers up to any given limit
* `B` [Is Power of Two](src/algorithms/math/is-power-of-two) - check if the number is power of two (naive and bitwise algorithms) * `B` [Is Power of Two](src/algorithms/math/is-power-of-two) - check if the number is power of two (naive and bitwise algorithms)
* `B` [Pascal's Triangle](src/algorithms/math/pascal-triangle) * `B` [Pascal's Triangle](src/algorithms/math/pascal-triangle)
* `B` [Complex Number](src/algorithms/math/complex-number) - complex numbers and basic operations with them
* `A` [Integer Partition](src/algorithms/math/integer-partition) * `A` [Integer Partition](src/algorithms/math/integer-partition)
* `A` [Liu Hui π Algorithm](src/algorithms/math/liu-hui) - approximate π calculations based on N-gons * `A` [Liu Hui π Algorithm](src/algorithms/math/liu-hui) - approximate π calculations based on N-gons
* **Sets** * **Sets**

View File

@ -0,0 +1,73 @@
export default class ComplexNumber {
/**
* @param {number} [real]
* @param {number} [imaginary]
*/
constructor({ real = 0, imaginary = 0 } = {}) {
this.real = real;
this.imaginary = imaginary;
}
/**
* @param {ComplexNumber} addend
* @return {ComplexNumber}
*/
add(addend) {
return new ComplexNumber({
real: this.real + addend.real,
imaginary: this.imaginary + addend.imaginary,
});
}
/**
* @param {ComplexNumber} subtrahend
* @return {ComplexNumber}
*/
subtract(subtrahend) {
return new ComplexNumber({
real: this.real - subtrahend.real,
imaginary: this.imaginary - subtrahend.imaginary,
});
}
/**
* @param {ComplexNumber} multiplicand
* @return {ComplexNumber}
*/
multiply(multiplicand) {
return new ComplexNumber({
real: this.real * multiplicand.real - this.imaginary * multiplicand.imaginary,
imaginary: this.real * multiplicand.imaginary + this.imaginary * multiplicand.real,
});
}
/**
* @param {ComplexNumber} divider
* @return {ComplexNumber}
*/
divide(divider) {
// Get divider conjugate.
const dividerConjugate = this.conjugate(divider);
// Multiply dividend by divider's conjugate.
const finalDivident = this.multiply(dividerConjugate);
// Calculating final divider using formula (a + bi)(a bi) = a^2 + b^2
const finalDivider = (divider.real ** 2) + (divider.imaginary ** 2);
return new ComplexNumber({
real: finalDivident.real / finalDivider,
imaginary: finalDivident.imaginary / finalDivider,
});
}
/**
* @param {ComplexNumber} complexNumber
*/
conjugate(complexNumber) {
return new ComplexNumber({
real: complexNumber.real,
imaginary: -1 * complexNumber.imaginary,
});
}
}

View File

@ -0,0 +1,193 @@
# Complex Number
A **complex number** is a number that can be expressed in the
form `a + b * i`, where `a` and `b` are real numbers, and `i` is a solution of
the equation `x^2 = 1`. Because no *real number* satisfies this
equation, `i` is called an *imaginary number*. For the complex
number `a + b * i`, `a` is called the *real part*, and `b` is called
the *imaginary part*.
![Complex Number](https://www.mathsisfun.com/numbers/images/complex-example.svg)
A Complex Number is a combination of a Real Number and an Imaginary Number:
![Complex Number](https://www.mathsisfun.com/numbers/images/complex-number.svg)
Geometrically, complex numbers extend the concept of the one-dimensional number
line to the *two-dimensional complex plane* by using the horizontal axis for the
real part and the vertical axis for the imaginary part. The complex
number `a + b * i` can be identified with the point `(a,b)` in the complex plane.
A complex number whose real part is zero is said to be *purely imaginary*; the
points for these numbers lie on the vertical axis of the complex plane. A complex
number whose imaginary part is zero can be viewed as a *real number*; its point
lies on the horizontal axis of the complex plane.
| Complex Number | Real Part | Imaginary Part | |
| :------------- | :-------: | :------------: | --- |
| 3 + 2i | 3 | 2 | |
| 5 | 5 | **0** | Purely Real |
| 6i | **0** | -6 | Purely Imaginary |
A complex number can be visually represented as a pair of numbers `(a,b)` forming
a vector on a diagram called an *Argand diagram*, representing the *complex plane*.
`Re` is the real axis, `Im` is the imaginary axis, and `i` satisfies `i^2 = 1`.
![Complex Number](https://upload.wikimedia.org/wikipedia/commons/a/af/Complex_number_illustration.svg)
> Complex does not mean complicated. It means the two types of numbers, real and
imaginary, together form a complex, just like a building complex (buildings
joined together).
## Basic Operations
### Adding
To add two complex numbers we add each part separately:
```text
(a + b * i) + (c + d * i) = (a + c) + (b + d) * i
```
**Example**
```text
(3 + 5i) + (4 3i) = (3 + 4) + (5 3)i = 7 + 2i
```
On complex plane the adding operation will look like the following:
![Complex Addition](https://www.mathsisfun.com/algebra/images/complex-plane-vector-add.svg)
### Subtracting
To subtract two complex numbers we subtract each part separately:
```text
(a + b * i) - (c + d * i) = (a - c) + (b - d) * i
```
**Example**
```text
(3 + 5i) - (4 3i) = (3 - 4) + (5 + 3)i = -1 + 8i
```
### Multiplying
To multiply complex numbers each part of the first complex number gets multiplied
by each part of the second complex number:
Just use "FOIL", which stands for "**F**irsts, **O**uters, **I**nners, **L**asts" (
see [Binomial Multiplication](ttps://www.mathsisfun.com/algebra/polynomials-multiplying.html) for
more details):
![Complex Multiplication](https://www.mathsisfun.com/algebra/images/foil-complex.svg)
- Firsts: `a × c`
- Outers: `a × di`
- Inners: `bi × c`
- Lasts: `bi × di`
In general it looks like this:
```text
(a + bi)(c + di) = ac + adi + bci + bdi^2
```
But there is also a quicker way!
Use this rule:
```text
(a + bi)(c + di) = (ac bd) + (ad + bc)i
```
**Example**
```text
(3 + 2i)(1 + 7i)
= 3×1 + 3×7i + 2i×1+ 2i×7i
= 3 + 21i + 2i + 14i^2
= 3 + 21i + 2i 14 (because i^2 = 1)
= 11 + 23i
```
```text
(3 + 2i)(1 + 7i) = (3×1 2×7) + (3×7 + 2×1)i = 11 + 23i
```
### Conjugates
We will need to know about conjugates in a minute!
A conjugate is where we change the sign in the middle like this:
![Complex Conjugate](https://www.mathsisfun.com/numbers/images/complex-conjugate.svg)
A conjugate is often written with a bar over it:
```text
______
5 3i = 5 + 3i
```
On the complex plane the conjugate number will be mirrored against real axes.
![Complex Conjugate](https://upload.wikimedia.org/wikipedia/commons/6/69/Complex_conjugate_picture.svg)
### Dividing
The conjugate is used to help complex division.
The trick is to *multiply both top and bottom by the conjugate of the bottom*.
**Example**
```text
2 + 3i
------
4 5i
```
Multiply top and bottom by the conjugate of `4 5i`:
```text
(2 + 3i) * (4 + 5i) 8 + 10i + 12i + 15i^2
= ------------------- = ----------------------
(4 5i) * (4 + 5i) 16 + 20i 20i 25i^2
```
Now remember that `i^2 = 1`, so:
```text
8 + 10i + 12i 15 7 + 22i 7 22
= ------------------- = -------- = -- + -- * i
16 + 20i 20i + 25 41 41 41
```
There is a faster way though.
In the previous example, what happened on the bottom was interesting:
```text
(4 5i)(4 + 5i) = 16 + 20i 20i 25i
```
The middle terms `(20i 20i)` cancel out! Also `i^2 = 1` so we end up with this:
```text
(4 5i)(4 + 5i) = 4^2 + 5^2
```
Which is really quite a simple result. The general rule is:
```text
(a + bi)(a bi) = a^2 + b^2
```
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Complex_number)
- [Math is Fun](https://www.mathsisfun.com/numbers/complex-numbers.html)

View File

@ -0,0 +1,113 @@
import ComplexNumber from '../ComplexNumber';
describe('ComplexNumber', () => {
it('should create complex numbers', () => {
const complexNumber = new ComplexNumber({ real: 1, imaginary: 2 });
expect(complexNumber).toBeDefined();
expect(complexNumber.real).toBe(1);
expect(complexNumber.imaginary).toBe(2);
const defaultComplexNumber = new ComplexNumber();
expect(defaultComplexNumber.real).toBe(0);
expect(defaultComplexNumber.imaginary).toBe(0);
});
it('should add complex numbers', () => {
const complexNumber1 = new ComplexNumber({ real: 1, imaginary: 2 });
const complexNumber2 = new ComplexNumber({ real: 3, imaginary: 8 });
const complexNumber3 = complexNumber1.add(complexNumber2);
const complexNumber4 = complexNumber2.add(complexNumber1);
expect(complexNumber3.real).toBe(1 + 3);
expect(complexNumber3.imaginary).toBe(2 + 8);
expect(complexNumber4.real).toBe(1 + 3);
expect(complexNumber4.imaginary).toBe(2 + 8);
});
it('should add complex and natural numbers', () => {
const complexNumber = new ComplexNumber({ real: 1, imaginary: 2 });
const realNumber = new ComplexNumber({ real: 3 });
const complexNumber3 = complexNumber.add(realNumber);
const complexNumber4 = realNumber.add(complexNumber);
expect(complexNumber3.real).toBe(1 + 3);
expect(complexNumber3.imaginary).toBe(2);
expect(complexNumber4.real).toBe(1 + 3);
expect(complexNumber4.imaginary).toBe(2);
});
it('should subtract complex numbers', () => {
const complexNumber1 = new ComplexNumber({ real: 1, imaginary: 2 });
const complexNumber2 = new ComplexNumber({ real: 3, imaginary: 8 });
const complexNumber3 = complexNumber1.subtract(complexNumber2);
const complexNumber4 = complexNumber2.subtract(complexNumber1);
expect(complexNumber3.real).toBe(1 - 3);
expect(complexNumber3.imaginary).toBe(2 - 8);
expect(complexNumber4.real).toBe(3 - 1);
expect(complexNumber4.imaginary).toBe(8 - 2);
});
it('should subtract complex and natural numbers', () => {
const complexNumber = new ComplexNumber({ real: 1, imaginary: 2 });
const realNumber = new ComplexNumber({ real: 3 });
const complexNumber3 = complexNumber.subtract(realNumber);
const complexNumber4 = realNumber.subtract(complexNumber);
expect(complexNumber3.real).toBe(1 - 3);
expect(complexNumber3.imaginary).toBe(2);
expect(complexNumber4.real).toBe(3 - 1);
expect(complexNumber4.imaginary).toBe(-2);
});
it('should multiply complex numbers', () => {
const complexNumber1 = new ComplexNumber({ real: 3, imaginary: 2 });
const complexNumber2 = new ComplexNumber({ real: 1, imaginary: 7 });
const complexNumber3 = complexNumber1.multiply(complexNumber2);
const complexNumber4 = complexNumber2.multiply(complexNumber1);
expect(complexNumber3.real).toBe(-11);
expect(complexNumber3.imaginary).toBe(23);
expect(complexNumber4.real).toBe(-11);
expect(complexNumber4.imaginary).toBe(23);
});
it('should multiply complex numbers by themselves', () => {
const complexNumber = new ComplexNumber({ real: 1, imaginary: 1 });
const result = complexNumber.multiply(complexNumber);
expect(result.real).toBe(0);
expect(result.imaginary).toBe(2);
});
it('should calculate i in power of two', () => {
const complexNumber = new ComplexNumber({ real: 0, imaginary: 1 });
const result = complexNumber.multiply(complexNumber);
expect(result.real).toBe(-1);
expect(result.imaginary).toBe(0);
});
it('should divide complex numbers', () => {
const complexNumber1 = new ComplexNumber({ real: 2, imaginary: 3 });
const complexNumber2 = new ComplexNumber({ real: 4, imaginary: -5 });
const complexNumber3 = complexNumber1.divide(complexNumber2);
expect(complexNumber3.real).toBe(-7 / 41);
expect(complexNumber3.imaginary).toBe(22 / 41);
});
});