mirror of
https://github.moeyy.xyz/https://github.com/trekhleb/javascript-algorithms.git
synced 2025-01-13 21:40:05 +08:00
Refactor fast powering algorithm.
This commit is contained in:
parent
8676c1b9fe
commit
8116aa7cfb
@ -67,6 +67,7 @@ a set of rules that precisely define a sequence of operations.
|
|||||||
* `B` [Pascal's Triangle](src/algorithms/math/pascal-triangle)
|
* `B` [Pascal's Triangle](src/algorithms/math/pascal-triangle)
|
||||||
* `B` [Complex Number](src/algorithms/math/complex-number) - complex numbers and basic operations with them
|
* `B` [Complex Number](src/algorithms/math/complex-number) - complex numbers and basic operations with them
|
||||||
* `B` [Radian & Degree](src/algorithms/math/radian) - radians to degree and backwards conversion
|
* `B` [Radian & Degree](src/algorithms/math/radian) - radians to degree and backwards conversion
|
||||||
|
* `B` [Fast Powering](src/algorithms/math/fast-powering)
|
||||||
* `A` [Integer Partition](src/algorithms/math/integer-partition)
|
* `A` [Integer Partition](src/algorithms/math/integer-partition)
|
||||||
* `A` [Liu Hui π Algorithm](src/algorithms/math/liu-hui) - approximate π calculations based on N-gons
|
* `A` [Liu Hui π Algorithm](src/algorithms/math/liu-hui) - approximate π calculations based on N-gons
|
||||||
* `A` [Discrete Fourier Transform](src/algorithms/math/fourier-transform) - decompose a function of time (a signal) into the frequencies that make it up
|
* `A` [Discrete Fourier Transform](src/algorithms/math/fourier-transform) - decompose a function of time (a signal) into the frequencies that make it up
|
||||||
@ -163,6 +164,7 @@ algorithm is an abstraction higher than a computer program.
|
|||||||
* `B` [Tree Depth-First Search](src/algorithms/tree/depth-first-search) (DFS)
|
* `B` [Tree Depth-First Search](src/algorithms/tree/depth-first-search) (DFS)
|
||||||
* `B` [Graph Depth-First Search](src/algorithms/graph/depth-first-search) (DFS)
|
* `B` [Graph Depth-First Search](src/algorithms/graph/depth-first-search) (DFS)
|
||||||
* `B` [Jump Game](src/algorithms/uncategorized/jump-game)
|
* `B` [Jump Game](src/algorithms/uncategorized/jump-game)
|
||||||
|
* `B` [Fast Powering](src/algorithms/math/fast-powering)
|
||||||
* `A` [Permutations](src/algorithms/sets/permutations) (with and without repetitions)
|
* `A` [Permutations](src/algorithms/sets/permutations) (with and without repetitions)
|
||||||
* `A` [Combinations](src/algorithms/sets/combinations) (with and without repetitions)
|
* `A` [Combinations](src/algorithms/sets/combinations) (with and without repetitions)
|
||||||
* **Dynamic Programming** - build up a solution using previously found sub-solutions
|
* **Dynamic Programming** - build up a solution using previously found sub-solutions
|
||||||
|
@ -1,16 +0,0 @@
|
|||||||
import computePower from '../power';
|
|
||||||
|
|
||||||
describe('computePower', () => {
|
|
||||||
it('should compute Power', () => {
|
|
||||||
expect(computePower(1, 1)).toBe(1);
|
|
||||||
expect(computePower(2, 0)).toBe(1);
|
|
||||||
expect(computePower(3, 4)).toBe(81);
|
|
||||||
expect(computePower(190, 2)).toBe(36100);
|
|
||||||
expect(computePower(16, 16)).toBe(18446744073709552000);
|
|
||||||
expect(computePower(100, 9)).toBe(1000000000000000000);
|
|
||||||
expect(computePower(9, 16)).toBe(1853020188851841);
|
|
||||||
expect(computePower(11, 5)).toBe(161051);
|
|
||||||
expect(computePower(13, 11)).toBe(1792160394037);
|
|
||||||
expect(computePower(7, 21)).toBe(558545864083284000);
|
|
||||||
});
|
|
||||||
});
|
|
@ -1,4 +1,4 @@
|
|||||||
# Power(a,b)
|
# Fast Powering Algorithm
|
||||||
|
|
||||||
This computes power of (a,b)
|
This computes power of (a,b)
|
||||||
eg: power(2,3) = 8
|
eg: power(2,3) = 8
|
||||||
@ -33,3 +33,7 @@ power(2,5) = 2 * power(2,2) * power(2,2) = 2 * 4 * 4 = 32
|
|||||||
Complexity relation: T(n) = T(n/2) + 1
|
Complexity relation: T(n) = T(n/2) + 1
|
||||||
|
|
||||||
Time complexity of the algorithm: O(logn)
|
Time complexity of the algorithm: O(logn)
|
||||||
|
|
||||||
|
## References
|
||||||
|
|
||||||
|
|
@ -0,0 +1,23 @@
|
|||||||
|
import fastPowering from '../fastPowering';
|
||||||
|
|
||||||
|
describe('fastPowering', () => {
|
||||||
|
it('should compute power in log(n) time', () => {
|
||||||
|
expect(fastPowering(1, 1)).toBe(1);
|
||||||
|
expect(fastPowering(2, 0)).toBe(1);
|
||||||
|
expect(fastPowering(2, 2)).toBe(4);
|
||||||
|
expect(fastPowering(2, 3)).toBe(8);
|
||||||
|
expect(fastPowering(2, 4)).toBe(16);
|
||||||
|
expect(fastPowering(2, 5)).toBe(32);
|
||||||
|
expect(fastPowering(2, 6)).toBe(64);
|
||||||
|
expect(fastPowering(2, 7)).toBe(128);
|
||||||
|
expect(fastPowering(2, 8)).toBe(256);
|
||||||
|
expect(fastPowering(3, 4)).toBe(81);
|
||||||
|
expect(fastPowering(190, 2)).toBe(36100);
|
||||||
|
expect(fastPowering(11, 5)).toBe(161051);
|
||||||
|
expect(fastPowering(13, 11)).toBe(1792160394037);
|
||||||
|
expect(fastPowering(9, 16)).toBe(1853020188851841);
|
||||||
|
expect(fastPowering(16, 16)).toBe(18446744073709552000);
|
||||||
|
expect(fastPowering(7, 21)).toBe(558545864083284000);
|
||||||
|
expect(fastPowering(100, 9)).toBe(1000000000000000000);
|
||||||
|
});
|
||||||
|
});
|
@ -1,11 +1,11 @@
|
|||||||
/**
|
/**
|
||||||
* @param {number1} number
|
* Recursive implementation to compute power.
|
||||||
* @param {number2} number
|
*
|
||||||
* @return {number1^number2}
|
* @param {number} number1
|
||||||
|
* @param {number} number2
|
||||||
|
* @return {number}
|
||||||
*/
|
*/
|
||||||
|
export default function fastPowering(number1, number2) {
|
||||||
// recursive implementation to compute power
|
|
||||||
export default function computePower(number1, number2) {
|
|
||||||
let val = 0;
|
let val = 0;
|
||||||
let res = 0;
|
let res = 0;
|
||||||
if (number2 === 0) { // if number2 is 0
|
if (number2 === 0) { // if number2 is 0
|
||||||
@ -13,10 +13,10 @@ export default function computePower(number1, number2) {
|
|||||||
} else if (number2 === 1) { // if number2 is 1 return number 1 as it is
|
} else if (number2 === 1) { // if number2 is 1 return number 1 as it is
|
||||||
val = number1;
|
val = number1;
|
||||||
} else if (number2 % 2 === 0) { // if number2 is even
|
} else if (number2 % 2 === 0) { // if number2 is even
|
||||||
res = computePower(number1, number2 / 2);
|
res = fastPowering(number1, number2 / 2);
|
||||||
val = res * res;
|
val = res * res;
|
||||||
} else { // if number2 is odd
|
} else { // if number2 is odd
|
||||||
res = computePower(number1, Math.floor(number2 / 2));
|
res = fastPowering(number1, Math.floor(number2 / 2));
|
||||||
val = res * res * number1;
|
val = res * res * number1;
|
||||||
}
|
}
|
||||||
return val;
|
return val;
|
Loading…
Reference in New Issue
Block a user