mirror of
https://github.moeyy.xyz/https://github.com/trekhleb/javascript-algorithms.git
synced 2024-11-10 11:09:43 +08:00
Add more test cases for finding max sub-array algorithm.
This commit is contained in:
parent
2a2b5daa7d
commit
814fa773ca
@ -3,6 +3,10 @@ import bfMaximumSubarray from '../bfMaximumSubarray';
|
||||
describe('bfMaximumSubarray', () => {
|
||||
it('should find maximum subarray using brute force algorithm', () => {
|
||||
expect(bfMaximumSubarray([])).toEqual([]);
|
||||
expect(bfMaximumSubarray([0, 0])).toEqual([0]);
|
||||
expect(bfMaximumSubarray([0, 0, 1])).toEqual([0, 0, 1]);
|
||||
expect(bfMaximumSubarray([0, 0, 1, 2])).toEqual([0, 0, 1, 2]);
|
||||
expect(bfMaximumSubarray([0, 0, -1, 2])).toEqual([2]);
|
||||
expect(bfMaximumSubarray([-1, -2, -3, -4, -5])).toEqual([-1]);
|
||||
expect(bfMaximumSubarray([1, 2, 3, 2, 3, 4, 5])).toEqual([1, 2, 3, 2, 3, 4, 5]);
|
||||
expect(bfMaximumSubarray([-2, 1, -3, 4, -1, 2, 1, -5, 4])).toEqual([4, -1, 2, 1]);
|
||||
|
@ -3,6 +3,10 @@ import dpMaximumSubarray from '../dpMaximumSubarray';
|
||||
describe('dpMaximumSubarray', () => {
|
||||
it('should find maximum subarray using dynamic programming algorithm', () => {
|
||||
expect(dpMaximumSubarray([])).toEqual([]);
|
||||
expect(dpMaximumSubarray([0, 0])).toEqual([0]);
|
||||
expect(dpMaximumSubarray([0, 0, 1])).toEqual([0, 0, 1]);
|
||||
expect(dpMaximumSubarray([0, 0, 1, 2])).toEqual([0, 0, 1, 2]);
|
||||
expect(dpMaximumSubarray([0, 0, -1, 2])).toEqual([2]);
|
||||
expect(dpMaximumSubarray([-1, -2, -3, -4, -5])).toEqual([-1]);
|
||||
expect(dpMaximumSubarray([1, 2, 3, 2, 3, 4, 5])).toEqual([1, 2, 3, 2, 3, 4, 5]);
|
||||
expect(dpMaximumSubarray([-2, 1, -3, 4, -1, 2, 1, -5, 4])).toEqual([4, -1, 2, 1]);
|
||||
|
@ -6,36 +6,35 @@
|
||||
* @return {Number[]}
|
||||
*/
|
||||
export default function dpMaximumSubarray(inputArray) {
|
||||
// We iterate through the inputArray once, using a greedy approach
|
||||
// to keep track of the maximum sum we've seen so far and the current sum
|
||||
// We iterate through the inputArray once, using a greedy approach to keep track of the maximum
|
||||
// sum we've seen so far and the current sum.
|
||||
//
|
||||
// currentSum gets reset to 0 everytime it drops below 0
|
||||
// The currentSum variable gets reset to 0 every time it drops below 0.
|
||||
//
|
||||
// maxSum is set to -Infinity so that if all numbers
|
||||
// are negative, the highest negative number will constitute
|
||||
// the maximum subarray
|
||||
// The maxSum variable is set to -Infinity so that if all numbers are negative, the highest
|
||||
// negative number will constitute the maximum subarray.
|
||||
|
||||
let maxSum = -Infinity;
|
||||
let currentSum = 0;
|
||||
|
||||
// We need to keep track of the starting and ending indices that
|
||||
// contributed to our maxSum so that we can return the actual subarray
|
||||
// We need to keep track of the starting and ending indices that contributed to our maxSum
|
||||
// so that we can return the actual subarray.
|
||||
let maxStartIndex = 0;
|
||||
let maxEndIndex = inputArray.length;
|
||||
|
||||
let currentStartIndex = 0;
|
||||
|
||||
inputArray.forEach((num, currentIndex) => {
|
||||
currentSum += num;
|
||||
inputArray.forEach((currentNumber, currentIndex) => {
|
||||
currentSum += currentNumber;
|
||||
|
||||
// Update maxSum and the corresponding indices
|
||||
// if we have found a new max
|
||||
// Update maxSum and the corresponding indices if we have found a new max.
|
||||
if (maxSum < currentSum) {
|
||||
maxSum = currentSum;
|
||||
maxStartIndex = currentStartIndex;
|
||||
maxEndIndex = currentIndex + 1;
|
||||
}
|
||||
|
||||
// Reset currentSum and currentStartIndex
|
||||
// if currentSum drops below 0
|
||||
// Reset currentSum and currentStartIndex if currentSum drops below 0.
|
||||
if (currentSum < 0) {
|
||||
currentSum = 0;
|
||||
currentStartIndex = currentIndex + 1;
|
||||
|
Loading…
Reference in New Issue
Block a user