Adding K Nearest Neighbor to ML folder in algorithms with README and tests (#592)

* Updated KNN and README

* Update README.md

* new

* new

* updated tests

* updated knn coverage
This commit is contained in:
Avi Agrawal 2020-12-16 00:44:56 -05:00 committed by GitHub
parent 802557f1ac
commit 871d20d868
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 132 additions and 6 deletions

View File

@ -143,6 +143,7 @@ a set of rules that precisely define a sequence of operations.
* `B` [Caesar Cipher](src/algorithms/cryptography/caesar-cipher) - simple substitution cipher * `B` [Caesar Cipher](src/algorithms/cryptography/caesar-cipher) - simple substitution cipher
* **Machine Learning** * **Machine Learning**
* `B` [NanoNeuron](https://github.com/trekhleb/nano-neuron) - 7 simple JS functions that illustrate how machines can actually learn (forward/backward propagation) * `B` [NanoNeuron](https://github.com/trekhleb/nano-neuron) - 7 simple JS functions that illustrate how machines can actually learn (forward/backward propagation)
* `B` [KNN](src/algorithms/ML/KNN) - K Nearest Neighbors
* **Uncategorized** * **Uncategorized**
* `B` [Tower of Hanoi](src/algorithms/uncategorized/hanoi-tower) * `B` [Tower of Hanoi](src/algorithms/uncategorized/hanoi-tower)
* `B` [Square Matrix Rotation](src/algorithms/uncategorized/square-matrix-rotation) - in-place algorithm * `B` [Square Matrix Rotation](src/algorithms/uncategorized/square-matrix-rotation) - in-place algorithm

View File

@ -0,0 +1,23 @@
# KNN Algorithm
KNN stands for K Nearest Neighbors. KNN is a supervised Machine Learning algorithm. It's a classification algorithm, determining the class of a sample vector using a sample data.
The idea is to calculate the similarity between two data points on the basis of a distance metric. Euclidean distance is used mostly for this task. The algorithm is as follows -
1. Check for errors like invalid data/labels.
2. Calculate the euclidean distance of all the data points in training data with the classification point
3. Sort the distances of points along with their classes in ascending order
4. Take the initial "K" classes and find the mode to get the most similar class
5. Report the most similar class
Here is a visualization for better understanding -
![KNN Visualization](https://media.geeksforgeeks.org/wp-content/uploads/graph2-2.png)
Here, as we can see, the classification of unknown points will be judged by their proximity to other points.
It is important to note that "K" is preferred to have odd values in order to break ties. Usually "K" is taken as 3 or 5.
## References
- [GeeksforGeeks](https://media.geeksforgeeks.org/wp-content/uploads/graph2-2.png)

View File

@ -0,0 +1,42 @@
import KNN from '../knn';
describe('KNN', () => {
test('should throw an error on invalid data', () => {
expect(() => {
KNN();
}).toThrowError();
});
test('should throw an error on invalid labels', () => {
const nolabels = () => {
KNN([[1, 1]]);
};
expect(nolabels).toThrowError();
});
it('should throw an error on not giving classification vector', () => {
const noclassification = () => {
KNN([[1, 1]], [1]);
};
expect(noclassification).toThrowError();
});
it('should throw an error on not giving classification vector', () => {
const inconsistent = () => {
KNN([[1, 1]], [1], [1]);
};
expect(inconsistent).toThrowError();
});
it('should find the nearest neighbour', () => {
let dataX = [[1, 1], [2, 2]];
let dataY = [1, 2];
expect(KNN(dataX, dataY, [1, 1])).toBe(1);
dataX = [[1, 1], [6, 2], [3, 3], [4, 5], [9, 2], [2, 4], [8, 7]];
dataY = [1, 2, 1, 2, 1, 2, 1];
expect(KNN(dataX, dataY, [1.25, 1.25]))
.toBe(1);
dataX = [[1, 1], [6, 2], [3, 3], [4, 5], [9, 2], [2, 4], [8, 7]];
dataY = [1, 2, 1, 2, 1, 2, 1];
expect(KNN(dataX, dataY, [1.25, 1.25], 5))
.toBe(2);
});
});

View File

@ -0,0 +1,60 @@
/**
* @param {object} dataY
* @param {object} dataX
* @param {object} toClassify
* @param {number} k
* @return {number}
*/
export default function KNN(dataX, dataY, toClassify, K) {
let k = -1;
if (K === undefined) {
k = 3;
} else {
k = K;
}
// creating function to calculate the euclidean distance between 2 vectors
function euclideanDistance(x1, x2) {
// checking errors
if (x1.length !== x2.length) {
throw new Error('inconsistency between data and classification vector.');
}
// calculate the euclidean distance between 2 vectors and return
let totalSSE = 0;
for (let j = 0; j < x1.length; j += 1) {
totalSSE += (x1[j] - x2[j]) ** 2;
}
return Number(Math.sqrt(totalSSE).toFixed(2));
}
// starting algorithm
// calculate distance from toClassify to each point for all dimensions in dataX
// store distance and point's class_index into distance_class_list
let distanceList = [];
for (let i = 0; i < dataX.length; i += 1) {
const tmStore = [];
tmStore.push(euclideanDistance(dataX[i], toClassify));
tmStore.push(dataY[i]);
distanceList[i] = tmStore;
}
// sort distanceList
// take initial k values, count with class index
distanceList = distanceList.sort().slice(0, k);
// count the number of instances of each class in top k members
// with that maintain record of highest count class simultanously
const modeK = {};
const maxm = [-1, -1];
for (let i = 0; i < Math.min(k, distanceList.length); i += 1) {
if (distanceList[i][1] in modeK) modeK[distanceList[i][1]] += 1;
else modeK[distanceList[i][1]] = 1;
if (modeK[distanceList[i][1]] > maxm[0]) {
[maxm[0], maxm[1]] = [modeK[distanceList[i][1]], distanceList[i][1]];
}
}
// return the class with highest count from maxm
return maxm[1];
}