Add Full Adder algorithm (math/bits) (#334)

* Add Full Adder algorithm (math/bits)

* Full adder: minor spelling fixes

* Full adder: even better comments
This commit is contained in:
Sergii Tkachenko 2019-04-03 00:42:16 -04:00 committed by Oleksii Trekhleb
parent 339ae02977
commit 97e4f5fe2a
3 changed files with 123 additions and 0 deletions

View File

@ -226,6 +226,42 @@ Number: 9 = (10 - 1) = 0b01001
> See [isPowerOfTwo.js](isPowerOfTwo.js) for further details.
#### Full Adder
This method adds up two integer numbers using bitwise operators.
It implements [full adder](https://en.wikipedia.org/wiki/Adder_(electronics))
electronics circut logic to sum two 32-bit integers in two's complement format.
It's using the boolean logic to cover all possible cases of adding two input bits:
with and without a "carry bit" from adding the previous less-significant stage.
Legend:
- `A`: Number `A`
- `B`: Number `B`
- `ai`: ith bit of number `A`
- `bi`: ith bit of number `B`
- `carryIn`: a bit carried in from the previous less-significant stage
- `carryOut`: a bit to carry to the next most-significant stage
- `bitSum`: The sum of `ai`, `bi`, and `carryIn`
- `resultBin`: The full result of adding current stage with all less-significant stages (in binary)
- `resultBin`: The full result of adding current stage with all less-significant stages (in decimal)
```
A = 3: 011
B = 6: 110
┌──────┬────┬────┬─────────┬──────────┬─────────┬───────────┬───────────┐
│ bit │ ai │ bi │ carryIn │ carryOut │ bitSum │ resultBin │ resultDec │
├──────┼────┼────┼─────────┼──────────┼─────────┼───────────┼───────────┤
│ 0 │ 1 │ 0 │ 0 │ 0 │ 1 │ 1 │ 1 │
│ 1 │ 1 │ 1 │ 0 │ 1 │ 0 │ 01 │ 1 │
│ 2 │ 0 │ 1 │ 1 │ 1 │ 0 │ 001 │ 1 │
│ 3 │ 0 │ 0 │ 1 │ 0 │ 1 │ 1001 │ 9 │
└──────┴────┴────┴─────────┴──────────┴─────────┴───────────┴───────────┘
```
> See [fullAdder.js](fullAdder.js) for further details.
> See [Full Adder on YouTube](https://www.youtube.com/watch?v=wvJc9CZcvBc).
## References
- [Bit Manipulation on YouTube](https://www.youtube.com/watch?v=NLKQEOgBAnw&t=0s&index=28&list=PLLXdhg_r2hKA7DPDsunoDZ-Z769jWn4R8)

View File

@ -0,0 +1,18 @@
import fullAdder from '../fullAdder';
describe('Full adder', () => {
it('should add up two numbers', () => {
expect(fullAdder(0, 0)).toBe(0);
expect(fullAdder(2, 0)).toBe(2);
expect(fullAdder(0, 2)).toBe(2);
expect(fullAdder(1, 2)).toBe(3);
expect(fullAdder(2, 1)).toBe(3);
expect(fullAdder(6, 6)).toBe(12);
expect(fullAdder(-2, 4)).toBe(2);
expect(fullAdder(4, -2)).toBe(2);
expect(fullAdder(-4, -4)).toBe(-8);
expect(fullAdder(4, -5)).toBe(-1);
expect(fullAdder(2, 121)).toBe(123);
expect(fullAdder(121, 2)).toBe(123);
});
});

View File

@ -0,0 +1,69 @@
import getBit from './getBit';
/**
* Add two numbers using only binary operators.
*
* This is an implementation of full adders logic circut.
* https://en.wikipedia.org/wiki/Adder_(electronics)
* Inspired by: https://www.youtube.com/watch?v=wvJc9CZcvBc
*
* Table(1)
* INPUT | OUT
* C Ai Bi | C Si | Row
* -------- | -----| ---
* 0 0 0 | 0 0 | 1
* 0 0 1 | 0 1 | 2
* 0 1 0 | 0 1 | 3
* 0 1 1 | 1 0 | 4
* -------- | ---- | --
* 1 0 0 | 0 1 | 5
* 1 0 1 | 1 0 | 6
* 1 1 0 | 1 0 | 7
* 1 1 1 | 1 1 | 8
* ---------------------
*
* Legend:
* INPUT C = Carry in, from the previous less-significant stage
* INPUT Ai = ith bit of Number A
* INPUT Bi = ith bit of Number B
* OUT C = Carry out to the next most-significant stage
* OUT Si = Bit Sum, ith least significant bit of the result
*
*
* @param {number} a
* @param {number} b
* @return {number}
*/
export default function fullAdder(a, b) {
let result = 0;
let carry = 0;
// The operands of all bitwise operators are converted to signed
// 32-bit integers in two's complement format.
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators#Signed_32-bit_integers
for (let i = 0; i < 32; i += 1) {
const ai = getBit(a, i);
const bi = getBit(b, i);
const carryIn = carry;
// Calculate binary Ai + Bi without carry (half adder)
// See Table(1) rows 1 - 4: Si = Ai ^ Bi
const aiPlusBi = ai ^ bi;
// Calculate ith bit of the result by adding the carry bit to Ai + Bi
// For Table(1) rows 5 - 8 carryIn = 1: Si = Ai ^ Bi ^ 1, flip the bit
// Fpr Table(1) rows 1 - 4 carryIn = 0: Si = Ai ^ Bi ^ 0, a no-op.
const bitSum = aiPlusBi ^ carryIn;
// Carry out one to the next most-significant stage
// when at least one of these is true:
// 1) Table(1) rows 6, 7: one of Ai OR Bi is 1 AND carryIn = 1
// 2) Table(1) rows 4, 8: Both Ai AND Bi are 1
const carryOut = (aiPlusBi & carryIn) | (ai & bi);
carry = carryOut;
// Set ith least significant bit of the result to bitSum.
result |= bitSum << i;
}
return result;
}