Add Pascal's triangle.

This commit is contained in:
Oleksii Trekhleb 2018-07-07 11:11:20 +03:00
parent f3189cca43
commit b87839062a
5 changed files with 61 additions and 2 deletions

View File

@ -1,7 +1,7 @@
# Pascal's Triangle # Pascal's Triangle
In mathematics, **Pascal's triangle** is a triangular array of In mathematics, **Pascal's triangle** is a triangular array of
the binomial coefficients. the [binomial coefficients](https://en.wikipedia.org/wiki/Binomial_coefficient).
The rows of Pascal's triangle are conventionally enumerated The rows of Pascal's triangle are conventionally enumerated
starting with row `n = 0` at the top (the `0th` row). The starting with row `n = 0` at the top (the `0th` row). The
@ -34,6 +34,31 @@ paragraph may be written as follows:
for any non-negative integer `n` and any for any non-negative integer `n` and any
integer `k` between `0` and `n`, inclusive. integer `k` between `0` and `n`, inclusive.
![Binomial Coefficient](https://wikimedia.org/api/rest_v1/media/math/render/svg/a2457a7ef3c77831e34e06a1fe17a80b84a03181)
## Calculating triangle entries in O(n) time
We know that `i`-th entry in a line number `lineNumber` is
Binomial Coefficient `C(lineNumber, i)` and all lines start
with value `1`. The idea is to
calculate `C(lineNumber, i)` using `C(lineNumber, i-1)`. It
can be calculated in `O(1)` time using the following:
```
C(lineNumber, i) = lineNumber! / ((lineNumber - i)! * i!)
C(lineNumber, i - 1) = lineNumber! / ((lineNumber - i + 1)! * (i - 1)!)
```
We can derive following expression from above two expressions:
```
C(lineNumber, i) = C(lineNumber, i - 1) * (lineNumber - i + 1) / i
```
So `C(lineNumber, i)` can be calculated
from `C(lineNumber, i - 1)` in `O(1)` time.
## References ## References
- [Wikipedia](https://en.wikipedia.org/wiki/Pascal%27s_triangle) - [Wikipedia](https://en.wikipedia.org/wiki/Pascal%27s_triangle)
- [GeeksForGeeks](https://www.geeksforgeeks.org/pascal-triangle/)

View File

@ -0,0 +1,14 @@
import pascalTriangle from '../pascalTriangle';
describe('pascalTriangle', () => {
it('should calculate Pascal Triangle coefficients for specific line number', () => {
expect(pascalTriangle(0)).toEqual([1]);
expect(pascalTriangle(1)).toEqual([1, 1]);
expect(pascalTriangle(2)).toEqual([1, 2, 1]);
expect(pascalTriangle(3)).toEqual([1, 3, 3, 1]);
expect(pascalTriangle(4)).toEqual([1, 4, 6, 4, 1]);
expect(pascalTriangle(5)).toEqual([1, 5, 10, 10, 5, 1]);
expect(pascalTriangle(6)).toEqual([1, 6, 15, 20, 15, 6, 1]);
expect(pascalTriangle(7)).toEqual([1, 7, 21, 35, 35, 21, 7, 1]);
});
});

View File

@ -0,0 +1,16 @@
/**
* @param {number} lineNumber - zero based.
* @return {number[]}
*/
export default function pascalTriangle(lineNumber) {
const currentLine = [1];
const currentLineSize = lineNumber + 1;
for (let numIndex = 1; numIndex < currentLineSize; numIndex += 1) {
// See explanation of this formula in README.
currentLine[numIndex] = currentLine[numIndex - 1] * (lineNumber - numIndex + 1) / numIndex;
}
return currentLine;
}

View File

@ -1,5 +1,5 @@
/** /**
* @param {number} lineNumber * @param {number} lineNumber - zero based.
* @return {number[]} * @return {number[]}
*/ */
export default function pascalTriangleRecursive(lineNumber) { export default function pascalTriangleRecursive(lineNumber) {

View File

@ -1,5 +1,6 @@
import combineWithoutRepetitions from '../combineWithoutRepetitions'; import combineWithoutRepetitions from '../combineWithoutRepetitions';
import factorial from '../../../math/factorial/factorial'; import factorial from '../../../math/factorial/factorial';
import pascalTriangle from '../../../math/pascal-triangle/pascalTriangle';
describe('combineWithoutRepetitions', () => { describe('combineWithoutRepetitions', () => {
it('should combine string without repetitions', () => { it('should combine string without repetitions', () => {
@ -56,5 +57,8 @@ describe('combineWithoutRepetitions', () => {
const expectedNumberOfCombinations = factorial(n) / (factorial(r) * factorial(n - r)); const expectedNumberOfCombinations = factorial(n) / (factorial(r) * factorial(n - r));
expect(combinations.length).toBe(expectedNumberOfCombinations); expect(combinations.length).toBe(expectedNumberOfCombinations);
// This one is just to see one of the way of Pascal's triangle application.
expect(combinations.length).toBe(pascalTriangle(n)[r]);
}); });
}); });