mirror of
https://github.moeyy.xyz/https://github.com/trekhleb/javascript-algorithms.git
synced 2024-12-26 07:01:18 +08:00
Refactor liuHui.
This commit is contained in:
parent
1e2fdc6943
commit
c536aa2c51
@ -1,19 +1,19 @@
|
||||
import liuHui from '../liuHui';
|
||||
|
||||
describe('liHui', () => {
|
||||
it('Dodecagon π', () => {
|
||||
describe('liuHui', () => {
|
||||
it('should calculate π based on 12-gon', () => {
|
||||
expect(liuHui(1)).toBe(3);
|
||||
});
|
||||
|
||||
it('24-gon π', () => {
|
||||
it('should calculate π based on 24-gon', () => {
|
||||
expect(liuHui(2)).toBe(3.105828541230249);
|
||||
});
|
||||
|
||||
it('6144-gon π', () => {
|
||||
it('should calculate π based on 6144-gon', () => {
|
||||
expect(liuHui(10)).toBe(3.1415921059992717);
|
||||
});
|
||||
|
||||
it('201326592-gon π', () => {
|
||||
it('should calculate π based on 201326592-gon', () => {
|
||||
expect(liuHui(25)).toBe(3.141592653589793);
|
||||
});
|
||||
});
|
||||
|
@ -1,42 +1,54 @@
|
||||
// Liu Hui began with an inscribed hexagon.
|
||||
// Let r is the radius of circle.
|
||||
// r is also the side length of the inscribed hexagon
|
||||
const c = 6;
|
||||
const r = 0.5;
|
||||
/*
|
||||
* Let circleRadius is the radius of circle.
|
||||
* circleRadius is also the side length of the inscribed hexagon
|
||||
*/
|
||||
const circleRadius = 1;
|
||||
|
||||
const getSideLength = (sideLength, count) => {
|
||||
if (count <= 0) return sideLength;
|
||||
const m = sideLength / 2;
|
||||
/**
|
||||
* @param {number} sideLength
|
||||
* @param {number} splitCounter
|
||||
* @return {number}
|
||||
*/
|
||||
function getNGonSideLength(sideLength, splitCounter) {
|
||||
if (splitCounter <= 0) {
|
||||
return sideLength;
|
||||
}
|
||||
|
||||
// Liu Hui used the Gou Gu theorem repetitively.
|
||||
const g = Math.sqrt((r ** 2) - (m ** 2));
|
||||
const j = r - g;
|
||||
const halfSide = sideLength / 2;
|
||||
|
||||
return getSideLength(Math.sqrt((j ** 2) + (m ** 2)), count - 1);
|
||||
};
|
||||
// Liu Hui used the Gou Gu (Pythagorean theorem) theorem repetitively.
|
||||
const perpendicular = Math.sqrt((circleRadius ** 2) - (halfSide ** 2));
|
||||
const excessRadius = circleRadius - perpendicular;
|
||||
const splitSideLength = Math.sqrt((excessRadius ** 2) + (halfSide ** 2));
|
||||
|
||||
const getSideCount = splitCount => c * (splitCount ? 2 ** splitCount : 1);
|
||||
return getNGonSideLength(splitSideLength, splitCounter - 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param {number} splitCount
|
||||
* @return {number}
|
||||
*/
|
||||
function getNGonSideCount(splitCount) {
|
||||
// Liu Hui began with an inscribed hexagon (6-gon).
|
||||
const hexagonSidesCount = 6;
|
||||
|
||||
// On every split iteration we make N-gons: 6-gon, 12-gon, 24-gon, 48-gon and so on.
|
||||
return hexagonSidesCount * (splitCount ? 2 ** splitCount : 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the π value using Liu Hui's π algorithm
|
||||
*
|
||||
* Liu Hui argued:
|
||||
* Multiply one side of a hexagon by the radius (of its circumcircle),
|
||||
* then multiply this by three, to yield the area of a dodecagon; if we
|
||||
* cut a hexagon into a dodecagon, multiply its side by its radius, then
|
||||
* again multiply by six, we get the area of a 24-gon; the finer we cut,
|
||||
* the smaller the loss with respect to the area of circle, thus with
|
||||
* further cut after cut, the area of the resulting polygon will coincide
|
||||
* and become one with the circle; there will be no loss
|
||||
*
|
||||
* @param {number} splitCount repeat times
|
||||
* @param {number} splitCount - number of times we're going to split 6-gon.
|
||||
* On each split we will receive 12-gon, 24-gon and so on.
|
||||
* @return {number}
|
||||
*/
|
||||
export default function liuHui(splitCount = 1) {
|
||||
const sideLength = getSideLength(r, splitCount - 1);
|
||||
const sideCount = getSideCount(splitCount - 1);
|
||||
const p = sideLength * sideCount;
|
||||
const area = (p / 2) * r;
|
||||
const nGonSideLength = getNGonSideLength(circleRadius, splitCount - 1);
|
||||
const nGonSideCount = getNGonSideCount(splitCount - 1);
|
||||
const nGonPerimeter = nGonSideLength * nGonSideCount;
|
||||
const approximateCircleArea = (nGonPerimeter / 2) * circleRadius;
|
||||
|
||||
return area / (r ** 2);
|
||||
// Return approximate value of pi.
|
||||
return approximateCircleArea / (circleRadius ** 2);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user