Refactor liuHui.

This commit is contained in:
Oleksii Trekhleb 2018-06-12 17:29:57 +03:00
parent 1e2fdc6943
commit c536aa2c51
2 changed files with 46 additions and 34 deletions

View File

@ -1,19 +1,19 @@
import liuHui from '../liuHui'; import liuHui from '../liuHui';
describe('liHui', () => { describe('liuHui', () => {
it('Dodecagon π', () => { it('should calculate π based on 12-gon', () => {
expect(liuHui(1)).toBe(3); expect(liuHui(1)).toBe(3);
}); });
it('24-gon π', () => { it('should calculate π based on 24-gon', () => {
expect(liuHui(2)).toBe(3.105828541230249); expect(liuHui(2)).toBe(3.105828541230249);
}); });
it('6144-gon π', () => { it('should calculate π based on 6144-gon', () => {
expect(liuHui(10)).toBe(3.1415921059992717); expect(liuHui(10)).toBe(3.1415921059992717);
}); });
it('201326592-gon π', () => { it('should calculate π based on 201326592-gon', () => {
expect(liuHui(25)).toBe(3.141592653589793); expect(liuHui(25)).toBe(3.141592653589793);
}); });
}); });

View File

@ -1,42 +1,54 @@
// Liu Hui began with an inscribed hexagon. /*
// Let r is the radius of circle. * Let circleRadius is the radius of circle.
// r is also the side length of the inscribed hexagon * circleRadius is also the side length of the inscribed hexagon
const c = 6; */
const r = 0.5; const circleRadius = 1;
const getSideLength = (sideLength, count) => { /**
if (count <= 0) return sideLength; * @param {number} sideLength
const m = sideLength / 2; * @param {number} splitCounter
* @return {number}
*/
function getNGonSideLength(sideLength, splitCounter) {
if (splitCounter <= 0) {
return sideLength;
}
// Liu Hui used the Gou Gu theorem repetitively. const halfSide = sideLength / 2;
const g = Math.sqrt((r ** 2) - (m ** 2));
const j = r - g;
return getSideLength(Math.sqrt((j ** 2) + (m ** 2)), count - 1); // Liu Hui used the Gou Gu (Pythagorean theorem) theorem repetitively.
}; const perpendicular = Math.sqrt((circleRadius ** 2) - (halfSide ** 2));
const excessRadius = circleRadius - perpendicular;
const splitSideLength = Math.sqrt((excessRadius ** 2) + (halfSide ** 2));
const getSideCount = splitCount => c * (splitCount ? 2 ** splitCount : 1); return getNGonSideLength(splitSideLength, splitCounter - 1);
}
/**
* @param {number} splitCount
* @return {number}
*/
function getNGonSideCount(splitCount) {
// Liu Hui began with an inscribed hexagon (6-gon).
const hexagonSidesCount = 6;
// On every split iteration we make N-gons: 6-gon, 12-gon, 24-gon, 48-gon and so on.
return hexagonSidesCount * (splitCount ? 2 ** splitCount : 1);
}
/** /**
* Calculate the π value using Liu Hui's π algorithm * Calculate the π value using Liu Hui's π algorithm
* *
* Liu Hui argued: * @param {number} splitCount - number of times we're going to split 6-gon.
* Multiply one side of a hexagon by the radius (of its circumcircle), * On each split we will receive 12-gon, 24-gon and so on.
* then multiply this by three, to yield the area of a dodecagon; if we
* cut a hexagon into a dodecagon, multiply its side by its radius, then
* again multiply by six, we get the area of a 24-gon; the finer we cut,
* the smaller the loss with respect to the area of circle, thus with
* further cut after cut, the area of the resulting polygon will coincide
* and become one with the circle; there will be no loss
*
* @param {number} splitCount repeat times
* @return {number} * @return {number}
*/ */
export default function liuHui(splitCount = 1) { export default function liuHui(splitCount = 1) {
const sideLength = getSideLength(r, splitCount - 1); const nGonSideLength = getNGonSideLength(circleRadius, splitCount - 1);
const sideCount = getSideCount(splitCount - 1); const nGonSideCount = getNGonSideCount(splitCount - 1);
const p = sideLength * sideCount; const nGonPerimeter = nGonSideLength * nGonSideCount;
const area = (p / 2) * r; const approximateCircleArea = (nGonPerimeter / 2) * circleRadius;
return area / (r ** 2); // Return approximate value of pi.
return approximateCircleArea / (circleRadius ** 2);
} }