# Estrutura de Dados e Algoritmos em JavaScript [![CI](https://github.com/trekhleb/javascript-algorithms/workflows/CI/badge.svg)](https://github.com/trekhleb/javascript-algorithms/actions?query=workflow%3ACI+branch%3Amaster) [![codecov](https://codecov.io/gh/trekhleb/javascript-algorithms/branch/master/graph/badge.svg)](https://codecov.io/gh/trekhleb/javascript-algorithms) Este repositório contém exemplos baseados em JavaScript de muitos algoritmos e estruturas de dados populares. Cada algoritmo e estrutura de dado possui seu próprio README com explicações relacionadas e links para leitura adicional (incluindo vídeos para YouTube) _Leia isto em outros idiomas:_ [_English_](https://github.com/trekhleb/javascript-algorithms/) [_简体中文_](README.zh-CN.md), [_繁體中文_](README.zh-TW.md), [_한국어_](README.ko-KR.md), [_日本語_](README.ja-JP.md), [_Polski_](README.pl-PL.md), [_Français_](README.fr-FR.md), [_Español_](README.es-ES.md), [_Русский_](README.ru-RU.md), [_Türk_](README.tr-TR.md), [_Italiana_](README.it-IT.md) ## Estrutura de Dados Uma estrutura de dados é uma maneira particular de organizar e armazenar dados em um computador para que ele possa ser acessado e modificado de forma eficiente. Mais precisamente, uma estrutura de dados é uma coleção de dados valores, as relações entre eles e as funções ou operações que podem ser aplicadas a os dados. `B` - Iniciante, `A` - Avançado * `B` [Lista Encadeada (Linked List)](src/data-structures/linked-list/README.pt-BR.md) * `B` [Lista Duplamente Ligada (Doubly Linked List)](src/data-structures/doubly-linked-list/README.pt-BR.md) * `B` [Fila (Queue)](src/data-structures/queue/README.pt-BR.md) * `B` [Stack](src/data-structures/stack/README.pt-BR.md) * `B` [Tabela de Hash (Hash Table)](src/data-structures/hash-table/README.pt-BR.md) * `B` [Heap](src/data-structures/heap/README.pt-BR.md) * `B` [Fila de Prioridade (Priority Queue)](src/data-structures/priority-queue/README.pt-BR.md) * `A` [Árvore de prefixos (Trie)](src/data-structures/trie/README.pt-BR.md) * `A` [Árvore (Tree)](src/data-structures/tree/README.pt-BR.md) * `A` [Árvore de Pesquisa Binária (Binary Search Tree)](src/data-structures/tree/binary-search-tree/README.pt-BR.md) * `A` [Árvore AVL (AVL Tree)](src/data-structures/tree/avl-tree/README.pt-BR.md) * `A` [Árvore Vermelha-Preta (Red-Black Tree)](src/data-structures/tree/red-black-tree/README.pt-BR.md) * `A` [Árvore de Segmento (Segment Tree)](src/data-structures/tree/segment-tree/README.pt-BR.md) - com exemplos de consultas min / max / sum range * `A` [Árvore Fenwick (Fenwick Tree)](src/data-structures/tree/fenwick-tree/README.pt-BR.md) (Árvore indexada binária) * `A` [Gráfico (Graph)](src/data-structures/graph/README.pt-BR.md) (ambos dirigidos e não direcionados) * `A` [Conjunto Disjuntor (Disjoint Set)](src/data-structures/disjoint-set/README.pt-BR.md) * `A` [Filtro Bloom (Bloom Filter)](src/data-structures/bloom-filter/README.pt-BR.md) ## Algoritmos Um algoritmo é uma especificação inequívoca de como resolver uma classe de problemas. Isto é um conjunto de regras que define precisamente uma sequência de operações. `B` - Iniciante, `A` - Avançado ### Algoritmos por Tópico * **Matemática** * `B` [Manipulação Bit](src/algorithms/math/bits) - set/get/update/clear bits, multiplicação / divisão por dois, tornar negativo etc. * `B` [Fatorial](src/algorithms/math/factorial) * `B` [Número de Fibonacci](src/algorithms/math/fibonacci) * `B` [Teste de Primalidade](src/algorithms/math/primality-test) (método de divisão experimental) * `B` [Algoritmo Euclidiano](src/algorithms/math/euclidean-algorithm) - calcular o maior divisor comum (GCD) * `B` [Mínimo múltiplo comum](src/algorithms/math/least-common-multiple) (LCM) * `B` [Peneira de Eratóstenes](src/algorithms/math/sieve-of-eratosthenes) - encontrar todos os números primos até um determinado limite * `B` [Potência de dois](src/algorithms/math/is-power-of-two) - verifique se o número é a potência de dois (algoritmos ingênuos e bit a bit) * `B` [Triângulo de Pascal](src/algorithms/math/pascal-triangle) * `B` [Número complexo](src/algorithms/math/complex-number) - números complexos e operações básicas com eles * `A` [Partição inteira](src/algorithms/math/integer-partition) * `A` [Algoritmo Liu Hui π](src/algorithms/math/liu-hui) - cálculos aproximados de π baseados em N-gons * **Conjuntos** * `B` [Produto cartesiano](src/algorithms/sets/cartesian-product) - produto de vários conjuntos * `B` [Permutações de Fisher–Yates](src/algorithms/sets/fisher-yates) - permutação aleatória de uma sequência finita * `A` [Potência e Conjunto](src/algorithms/sets/power-set) - todos os subconjuntos de um conjunto * `A` [Permutações](src/algorithms/sets/permutations) (com e sem repetições) * `A` [Combinações](src/algorithms/sets/combinations) (com e sem repetições) * `A` [Mais longa subsequência comum](src/algorithms/sets/longest-common-subsequence) (LCS) * `A` [Maior subsequência crescente](src/algorithms/sets/longest-increasing-subsequence) * `A` [Supersequência Comum mais curta](src/algorithms/sets/shortest-common-supersequence) (SCS) * `A` [Problema da mochila](src/algorithms/sets/knapsack-problem) - "0/1" e "Não consolidado" * `A` [Máximo Subarray](src/algorithms/sets/maximum-subarray) - "Força bruta" e " Programação Dinâmica" versões (Kadane's) * `A` [Soma de Combinação](src/algorithms/sets/combination-sum) - encontre todas as combinações que formam uma soma específica * **Cadeia de Caracteres** * `B` [Hamming Distance](src/algorithms/string/hamming-distance) - número de posições em que os símbolos são diferentes * `A` [Levenshtein Distance](src/algorithms/string/levenshtein-distance) - distância mínima de edição entre duas sequências * `A` [Knuth–Morris–Pratt Algorithm](src/algorithms/string/knuth-morris-pratt) (Algoritmo KMP) - pesquisa de substring (correspondência de padrão) * `A` [Z Algorithm](src/algorithms/string/z-algorithm) - pesquisa de substring (correspondência de padrão) * `A` [Rabin Karp Algorithm](src/algorithms/string/rabin-karp) - pesquisa de substring * `A` [Longest Common Substring](src/algorithms/string/longest-common-substring) * `A` [Regular Expression Matching](src/algorithms/string/regular-expression-matching) * **Buscas** * `B` [Linear Search](src/algorithms/search/linear-search) * `B` [Jump Search](src/algorithms/search/jump-search) (ou Bloquear pesquisa) - pesquisar na matriz ordenada * `B` [Binary Search](src/algorithms/search/binary-search) - pesquisar na matriz ordenada * `B` [Interpolation Search](src/algorithms/search/interpolation-search) - pesquisar em matriz classificada uniformemente distribuída * **Classificação** * `B` [Bubble Sort](src/algorithms/sorting/bubble-sort) * `B` [Selection Sort](src/algorithms/sorting/selection-sort) * `B` [Insertion Sort](src/algorithms/sorting/insertion-sort) * `B` [Heap Sort](src/algorithms/sorting/heap-sort) * `B` [Merge Sort](src/algorithms/sorting/merge-sort) * `B` [Quicksort](src/algorithms/sorting/quick-sort) - implementações local e não local * `B` [Shellsort](src/algorithms/sorting/shell-sort) * `B` [Counting Sort](src/algorithms/sorting/counting-sort) * `B` [Radix Sort](src/algorithms/sorting/radix-sort) * **Arvóres** * `B` [Depth-First Search](src/algorithms/tree/depth-first-search) (DFS) * `B` [Breadth-First Search](src/algorithms/tree/breadth-first-search) (BFS) * **Gráficos** * `B` [Depth-First Search](src/algorithms/graph/depth-first-search) (DFS) * `B` [Breadth-First Search](src/algorithms/graph/breadth-first-search) (BFS) * `B` [Kruskal’s Algorithm](src/algorithms/graph/kruskal) - encontrando Árvore Mínima de Abrangência (MST) para grafo não direcionado ponderado * `A` [Dijkstra Algorithm](src/algorithms/graph/dijkstra) - encontrar caminhos mais curtos para todos os vértices do grafo a partir de um único vértice * `A` [Bellman-Ford Algorithm](src/algorithms/graph/bellman-ford) - encontrar caminhos mais curtos para todos os vértices do grafo a partir de um único vértice * `A` [Floyd-Warshall Algorithm](src/algorithms/graph/floyd-warshall) - encontrar caminhos mais curtos entre todos os pares de vértices * `A` [Detect Cycle](src/algorithms/graph/detect-cycle) - para gráficos direcionados e não direcionados (versões baseadas em DFS e Conjunto Disjuntivo) * `A` [Prim’s Algorithm](src/algorithms/graph/prim) - encontrando Árvore Mínima de Abrangência (MST) para grafo não direcionado ponderado * `A` [Topological Sorting](src/algorithms/graph/topological-sorting) - Métodos DFS * `A` [Articulation Points](src/algorithms/graph/articulation-points) -O algoritmo de Tarjan (baseado em DFS) * `A` [Bridges](src/algorithms/graph/bridges) - Algoritmo baseado em DFS * `A` [Eulerian Path and Eulerian Circuit](src/algorithms/graph/eulerian-path) - Algoritmo de Fleury - Visite todas as bordas exatamente uma vez * `A` [Hamiltonian Cycle](src/algorithms/graph/hamiltonian-cycle) - Visite todas as bordas exatamente uma vez * `A` [Strongly Connected Components](src/algorithms/graph/strongly-connected-components) - Algoritmo de Kosaraju's * `A` [Travelling Salesman Problem](src/algorithms/graph/travelling-salesman) - rota mais curta possível que visita cada cidade e retorna à cidade de origem * **criptografia** * `B` [Polynomial Hash](src/algorithms/cryptography/polynomial-hash) - função de hash de rolagem baseada em polinômio * **Sem categoria** * `B` [Tower of Hanoi](src/algorithms/uncategorized/hanoi-tower) * `B` [Square Matrix Rotation](src/algorithms/uncategorized/square-matrix-rotation) - algoritmo no local * `B` [Jump Game](src/algorithms/uncategorized/jump-game) - backtracking, programação dinâmica (top-down + bottom-up) e exemplos gananciosos * `B` [Unique Paths](src/algorithms/uncategorized/unique-paths) - backtracking, programação dinâmica e exemplos baseados no triângulo de Pascal * `B` [Rain Terraces](src/algorithms/uncategorized/rain-terraces) - trapping problema da água da chuva (programação dinâmica e versões de força bruta) * `A` [N-Queens Problem](src/algorithms/uncategorized/n-queens) * `A` [Knight's Tour](src/algorithms/uncategorized/knight-tour) ### Algoritmos por Paradigma Um paradigma algorítmico é um método ou abordagem genérica subjacente ao design de uma classe de algoritmos. É uma abstração maior do que a noção de um algoritmo, assim como algoritmo é uma abstração maior que um programa de computador. * **Força bruta** - look at all the possibilities and selects the best solution * `B` [Linear Search](src/algorithms/search/linear-search) * `B` [Rain Terraces](src/algorithms/uncategorized/rain-terraces) - trapping problema da água da chuva * `A` [Maximum Subarray](src/algorithms/sets/maximum-subarray) * `A` [Travelling Salesman Problem](src/algorithms/graph/travelling-salesman) - rota mais curta possível que visita cada cidade e retorna à cidade de origem * **Greedy** - choose the best option at the current time, without any consideration for the future * `B` [Jump Game](src/algorithms/uncategorized/jump-game) * `A` [Unbound Knapsack Problem](src/algorithms/sets/knapsack-problem) * `A` [Dijkstra Algorithm](src/algorithms/graph/dijkstra) - finding shortest path to all graph vertices * `A` [Prim’s Algorithm](src/algorithms/graph/prim) - encontrando Árvore Mínima de Abrangência (MST) para grafo não direcionado ponderado * `A` [Kruskal’s Algorithm](src/algorithms/graph/kruskal) - encontrando Árvore Mínima de Abrangência (MST) para grafo não direcionado ponderado * **Divide and Conquer** - dividir o problema em partes menores e depois resolver essas partes * `B` [Binary Search](src/algorithms/search/binary-search) * `B` [Tower of Hanoi](src/algorithms/uncategorized/hanoi-tower) * `B` [Pascal's Triangle](src/algorithms/math/pascal-triangle) * `B` [Euclidean Algorithm](src/algorithms/math/euclidean-algorithm) - calculate the Greatest Common Divisor (GCD) * `B` [Merge Sort](src/algorithms/sorting/merge-sort) * `B` [Quicksort](src/algorithms/sorting/quick-sort) * `B` [Tree Depth-First Search](src/algorithms/tree/depth-first-search) (DFS) * `B` [Graph Depth-First Search](src/algorithms/graph/depth-first-search) (DFS) * `B` [Jump Game](src/algorithms/uncategorized/jump-game) * `A` [Permutations](src/algorithms/sets/permutations) (com e sem repetições) * `A` [Combinations](src/algorithms/sets/combinations) (com e sem repetições) * **Dynamic Programming** - criar uma solução usando sub-soluções encontradas anteriormente * `B` [Fibonacci Number](src/algorithms/math/fibonacci) * `B` [Jump Game](src/algorithms/uncategorized/jump-game) * `B` [Unique Paths](src/algorithms/uncategorized/unique-paths) * `B` [Rain Terraces](src/algorithms/uncategorized/rain-terraces) - trapping problema da água da chuva * `A` [Levenshtein Distance](src/algorithms/string/levenshtein-distance) - distância mínima de edição entre duas sequências * `A` [Longest Common Subsequence](src/algorithms/sets/longest-common-subsequence) (LCS) * `A` [Longest Common Substring](src/algorithms/string/longest-common-substring) * `A` [Longest Increasing Subsequence](src/algorithms/sets/longest-increasing-subsequence) * `A` [Shortest Common Supersequence](src/algorithms/sets/shortest-common-supersequence) * `A` [0/1 Knapsack Problem](src/algorithms/sets/knapsack-problem) * `A` [Integer Partition](src/algorithms/math/integer-partition) * `A` [Maximum Subarray](src/algorithms/sets/maximum-subarray) * `A` [Bellman-Ford Algorithm](src/algorithms/graph/bellman-ford) - encontrando o caminho mais curto para todos os vértices do gráfico * `A` [Floyd-Warshall Algorithm](src/algorithms/graph/floyd-warshall) - encontrar caminhos mais curtos entre todos os pares de vértices * `A` [Regular Expression Matching](src/algorithms/string/regular-expression-matching) * **Backtracking** - da mesma forma que a força bruta, tente gerar todas as soluções possíveis, mas cada vez que você gerar a próxima solução, você testará se satisfizer todas as condições, e só então continuar gerando soluções subseqüentes. Caso contrário, volte atrás e siga um caminho diferente para encontrar uma solução. Normalmente, a passagem DFS do espaço de estados está sendo usada. * `B` [Jump Game](src/algorithms/uncategorized/jump-game) * `B` [Unique Paths](src/algorithms/uncategorized/unique-paths) * `A` [Hamiltonian Cycle](src/algorithms/graph/hamiltonian-cycle) - Visite todos os vértices exatamente uma vez * `A` [N-Queens Problem](src/algorithms/uncategorized/n-queens) * `A` [Knight's Tour](src/algorithms/uncategorized/knight-tour) * `A` [Combination Sum](src/algorithms/sets/combination-sum) - encontre todas as combinações que formam uma soma específica * **Branch & Bound** - lembre-se da solução de menor custo encontrada em cada etapa do retrocesso pesquisar e usar o custo da solução de menor custo encontrada até o limite inferior do custo de solução de menor custo para o problema, a fim de descartar soluções parciais com custos maiores que o solução de menor custo encontrada até o momento. Normalmente, a travessia BFS em combinação com a passagem DFS do espaço de estados árvore está sendo usada ## Como usar este repositório **Instalar todas as dependências** ``` npm install ``` **Executar o ESLint** Você pode querer executá-lo para verificar a qualidade do código. ``` npm run lint ``` **Execute todos os testes** ``` npm test ``` **Executar testes por nome** ``` npm test -- 'LinkedList' ``` **Parque infantil** Você pode brincar com estruturas de dados e algoritmos em `./src/playground/playground.js` arquivar e escrever testes para isso em `./src/playground/__test__/playground.test.js`. Em seguida, basta executar o seguinte comando para testar se o código do seu playground funciona conforme o esperado: ``` npm test -- 'playground' ``` ## Informação útil ### Referências [▶ Estruturas de dados e algoritmos no YouTube](https://www.youtube.com/playlist?list=PLLXdhg_r2hKA7DPDsunoDZ-Z769jWn4R8) ### Notação Big O Ordem de crescimento dos algoritmos especificados em notação Big O. ![Notação Big-O](./assets/big-o-graph.png) Fonte: [Notação Big-O dicas](http://bigocheatsheet.com/). Abaixo está a lista de algumas das notações Big O mais usadas e suas comparações de desempenho em relação aos diferentes tamanhos dos dados de entrada. | Notação Big-O | Cálculos para 10 elementos | Cálculos para 100 elementos | Cálculos para 1000 elementos | | -------------- | ---------------------------- | ----------------------------- | ------------------------------- | | **O(1)** | 1 | 1 | 1 | | **O(log N)** | 3 | 6 | 9 | | **O(N)** | 10 | 100 | 1000 | | **O(N log N)** | 30 | 600 | 9000 | | **O(N^2)** | 100 | 10000 | 1000000 | | **O(2^N)** | 1024 | 1.26e+29 | 1.07e+301 | | **O(N!)** | 3628800 | 9.3e+157 | 4.02e+2567 | ### Complexidade de operações de estrutura de dados | estrutura de dados | Acesso | Busca | Inserção | Eliminação | comentários | | ----------------------- | :-------: | :-------: | :-------: | :-------: | :-------- | | **Array** | 1 | n | n | n | | | **Stack** | n | n | 1 | 1 | | | **Queue** | n | n | 1 | 1 | | | **Linked List** | n | n | 1 | 1 | | | **Hash Table** | - | n | n | n | Em caso de uma função hash perfeita, os custos seriam O (1) | | **Binary Search Tree** | n | n | n | n | No caso de custos de árvore equilibrados seria O (log (n)) | **B-Tree** | log(n) | log(n) | log(n) | log(n) | | | **Red-Black Tree** | log(n) | log(n) | log(n) | log(n) | | | **AVL Tree** | log(n) | log(n) | log(n) | log(n) | | | **Bloom Filter** | - | 1 | 1 | - | Falsos positivos são possíveis durante a pesquisa | ### Array Sorting Algorithms Complexity | Nome | Melhor | Média | Pior | Mémoria | Estável | comentários | | --------------------- | :-------------: | :-----------------: | :-----------------: | :-------: | :-------: | :-------- | | **Bubble sort** | n | n2 | n2 | 1 | Sim | | | **Insertion sort** | n | n2 | n2 | 1 | Sim | | | **Selection sort** | n2 | n2 | n2 | 1 | Não | | | **Heap sort** | n log(n) | n log(n) | n log(n) | 1 | Não | | | **Merge sort** | n log(n) | n log(n) | n log(n) | n | Sim | | | **Quick sort** | n log(n) | n log(n) | n2 | log(n) | Não | O Quicksort geralmente é feito no local com o espaço de pilha O O(log(n)) stack space | | **Shell sort** | n log(n) | depende da sequência de lacunas | n (log(n))2 | 1 | Não | | | **Counting sort** | n + r | n + r | n + r | n + r | Sim | r - maior número na matriz | | **Radix sort** | n * k | n * k | n * k | n + k | Sim | k - comprimento da chave mais longa |