Go to file
Oleksii Trekhleb d03f291aa6 Update README.
2018-05-19 10:24:32 +03:00
assets Add quick sort. 2018-04-15 06:51:47 +03:00
src Add Knight's tour. 2018-05-17 17:48:06 +03:00
.babelrc Add jest tests. 2018-03-27 13:03:44 +03:00
.editorconfig Add linked_list. 2018-03-25 23:28:32 +03:00
.eslintrc Add detect cycle. 2018-05-05 10:58:04 +03:00
.gitignore More tests. 2018-04-04 07:02:56 +03:00
.travis.yml Integrate codecov. 2018-04-04 07:15:22 +03:00
CODE_OF_CONDUCT.md Create CODE_OF_CONDUCT.md 2018-04-27 16:50:12 +03:00
CONTRIBUTING.md Update docs. 2018-04-27 16:57:53 +03:00
jest.config.js Make test coverage to be optional. 2018-04-05 06:27:06 +03:00
LICENSE Add License. 2018-04-11 08:06:39 +03:00
package-lock.json Update versions. 2018-04-27 17:12:06 +03:00
package.json Update packages. 2018-04-27 09:03:12 +03:00
README.md Update README. 2018-05-19 10:24:32 +03:00

JavaScript Algorithms and Data Structures

Build Status codecov

This repository contains JavaScript based examples of many popular algorithms and data structures.

Each algorithm and data structure have its own separate README with related explanations and links for further reading and YouTube videos.

Data Structures

Data structure is a particular way of organizing and storing data in a computer so that it can be accessed and modified efficiently. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data.

Algorithms

Algorithms by Topic

Algorithms by Paradigm

How to use this repository

Install all dependencies

npm install

Run all tests

npm test

Run tests by name

npm test -- -t 'LinkedList'

Playground

You may play with data-structures and algorithms in ./src/playground/playground.js file and write tests for it in ./src/playground/__test__/playground.test.js.

Then just simply run the following command to test if your playground code works as expected:

npm test -- -t 'playground'

Useful Information

References

▶ Data Structures and Algorithms on YouTube

Big O Notation

Order of growth of algorithms specified in Big O notation.

Big O graphs

Source: Big O Cheat Sheet.

Below is the list of some of the most used Big O notations and their performance comparisons against different sizes of the input data.

Big O Notation Computations for 10 elements Computations for 100 elements Computations for 1000 elements
O(1) 1 1 1
O(log N) 3 6 9
O(N) 10 100 1000
O(N log N) 30 60 9000
O(N^2) 100 10000 1000000
O(2^N) 1024 1.26e+29 1.07e+301
O(N!) 3628800 9.3e+157 4.02e+2567

Data Structure Operations Complexity

Data Structure Access Search Insertion Deletion
Array 1 n n n
Stack n n 1 1
Queue n n 1 1
Linked List n n 1 1
Hash Table - n n n
Binary Search Tree n n n n
B-Tree log(n) log(n) log(n) log(n)
Red-Black Tree log(n) log(n) log(n) log(n)
AVL Tree log(n) log(n) log(n) log(n)

Array Sorting Algorithms Complexity

Name Best Average Worst Memory Stable
Bubble sort n n^2 n^2 1 Yes
Insertion sort n n^2 n^2 1 Yes
Selection sort n^2 n^2 n^2 1 No
Heap sort n log(n) n log(n) n log(n) 1 No
Merge sort n log(n) n log(n) n log(n) n Yes
Quick sort n log(n) n log(n) n^2 log(n) No
Shell sort n log(n) depends on gap sequence n (log(n))^2 1 No