2018-03-27 19:43:15 +08:00
# JavaScript Algorithms and Data Structures
2018-03-26 04:28:32 +08:00
2018-03-28 14:41:20 +08:00
[![Build Status ](https://travis-ci.org/trekhleb/javascript-algorithms.svg?branch=master )](https://travis-ci.org/trekhleb/javascript-algorithms)
2018-04-04 12:11:59 +08:00
[![codecov ](https://codecov.io/gh/trekhleb/javascript-algorithms/branch/master/graph/badge.svg )](https://codecov.io/gh/trekhleb/javascript-algorithms)
2018-03-28 14:41:20 +08:00
2018-06-12 19:28:19 +08:00
This repository contains JavaScript based examples of many
2018-05-18 03:10:39 +08:00
popular algorithms and data structures.
2018-06-02 14:09:52 +08:00
Each algorithm and data structure has its own separate README
with related explanations and links for further reading (including ones
to YouTube videos).
2018-05-18 03:10:39 +08:00
2018-06-12 19:28:19 +08:00
_Read this in other languages:_
2018-06-22 20:41:35 +08:00
[简体中文 ](README.zh-CN.md ),
[繁體中文 ](README.zh-TW.md )
2018-05-24 13:57:11 +08:00
2018-04-26 12:27:44 +08:00
## Data Structures
2018-03-27 20:14:57 +08:00
2018-06-02 14:09:52 +08:00
A data structure is a particular way of organizing and storing data in a computer so that it can
2018-06-12 19:28:19 +08:00
be accessed and modified efficiently. More precisely, a data structure is a collection of data
values, the relationships among them, and the functions or operations that can be applied to
2018-05-19 15:24:32 +08:00
the data.
2018-06-18 22:05:53 +08:00
`B` - Beginner, `A` - Advanced
2018-06-22 20:41:35 +08:00
* `B` [Linked List ](src/data-structures/linked-list )
* `B` [Queue ](src/data-structures/queue )
* `B` [Stack ](src/data-structures/stack )
* `B` [Hash Table ](src/data-structures/hash-table )
* `B` [Heap ](src/data-structures/heap )
* `B` [Priority Queue ](src/data-structures/priority-queue )
* `A` [Trie ](src/data-structures/trie )
* `A` [Tree ](src/data-structures/tree )
* `A` [Binary Search Tree ](src/data-structures/tree/binary-search-tree )
* `A` [AVL Tree ](src/data-structures/tree/avl-tree )
* `A` [Red-Black Tree ](src/data-structures/tree/red-black-tree )
* `A` [Segment Tree ](src/data-structures/tree/segment-tree ) - with min/max/sum range queries examples
* `A` [Fenwick Tree ](src/data-structures/tree/fenwick-tree ) (Binary Indexed Tree)
* `A` [Graph ](src/data-structures/graph ) (both directed and undirected)
* `A` [Disjoint Set ](src/data-structures/disjoint-set )
2018-07-01 01:07:19 +08:00
* `A` [Bloom Filter ](src/data-structures/bloom-filter )
2018-03-27 20:14:57 +08:00
2018-04-26 12:27:44 +08:00
## Algorithms
2018-03-29 15:22:08 +08:00
2018-06-02 14:09:52 +08:00
An algorithm is an unambiguous specification of how to solve a class of problems. It is
a set of rules that precisely define a sequence of operations.
2018-05-19 15:34:22 +08:00
2018-06-18 22:05:53 +08:00
`B` - Beginner, `A` - Advanced
2018-04-26 12:39:08 +08:00
### Algorithms by Topic
2018-05-18 03:01:17 +08:00
* **Math**
2018-06-27 23:05:18 +08:00
* `B` [Bit Manipulation ](src/algorithms/math/bits ) - set/get/update/clear bits, multiplication/division by two, make negative etc.
2018-06-22 20:41:35 +08:00
* `B` [Factorial ](src/algorithms/math/factorial )
* `B` [Fibonacci Number ](src/algorithms/math/fibonacci )
* `B` [Primality Test ](src/algorithms/math/primality-test ) (trial division method)
* `B` [Euclidean Algorithm ](src/algorithms/math/euclidean-algorithm ) - calculate the Greatest Common Divisor (GCD)
* `B` [Least Common Multiple ](src/algorithms/math/least-common-multiple ) (LCM)
* `A` [Integer Partition ](src/algorithms/math/integer-partition )
* `B` [Sieve of Eratosthenes ](src/algorithms/math/sieve-of-eratosthenes ) - finding all prime numbers up to any given limit
* `B` [Is Power of Two ](src/algorithms/math/is-power-of-two ) - check if the number is power of two (naive and bitwise algorithms)
* `A` [Liu Hui π Algorithm ](src/algorithms/math/liu-hui ) - approximate π calculations based on N-gons
2018-04-26 12:26:12 +08:00
* **Sets**
2018-06-22 20:41:35 +08:00
* `B` [Cartesian Product ](src/algorithms/sets/cartesian-product ) - product of multiple sets
* `A` [Power Set ](src/algorithms/sets/power-set ) - all subsets of a set
* `A` [Permutations ](src/algorithms/sets/permutations ) (with and without repetitions)
* `A` [Combinations ](src/algorithms/sets/combinations ) (with and without repetitions)
* `B` [Fisher– Yates Shuffle ](src/algorithms/sets/fisher-yates ) - random permutation of a finite sequence
* `A` [Longest Common Subsequence ](src/algorithms/sets/longest-common-subsequence ) (LCS)
* `A` [Longest Increasing Subsequence ](src/algorithms/sets/longest-increasing-subsequence )
* `A` [Shortest Common Supersequence ](src/algorithms/sets/shortest-common-supersequence ) (SCS)
* `A` [Knapsack Problem ](src/algorithms/sets/knapsack-problem ) - "0/1" and "Unbound" ones
* `A` [Maximum Subarray ](src/algorithms/sets/maximum-subarray ) - "Brute Force" and "Dynamic Programming" (Kadane's) versions
2018-06-30 15:19:14 +08:00
* `A` [Combination Sum ](src/algorithms/sets/combination-sum ) - find all combinations that form specific sum
2018-06-02 14:09:52 +08:00
* **Strings**
2018-06-22 20:41:35 +08:00
* `A` [Levenshtein Distance ](src/algorithms/string/levenshtein-distance ) - minimum edit distance between two sequences
* `B` [Hamming Distance ](src/algorithms/string/hamming-distance ) - number of positions at which the symbols are different
* `A` [Knuth– Morris– Pratt Algorithm ](src/algorithms/string/knuth-morris-pratt ) (KMP Algorithm) - substring search (pattern matching)
* `A` [Z Algorithm ](src/algorithms/string/z-algorithm ) - substring search (pattern matching)
* `A` [Rabin Karp Algorithm ](src/algorithms/string/rabin-karp ) - substring search
* `A` [Longest Common Substring ](src/algorithms/string/longest-common-substring )
2018-06-26 01:02:24 +08:00
* `A` [Regular Expression Matching ](src/algorithms/string/regular-expression-matching )
2018-06-02 14:09:52 +08:00
* **Searches**
2018-06-22 20:41:35 +08:00
* `B` [Linear Search ](src/algorithms/search/linear-search )
* `B` [Binary Search ](src/algorithms/search/binary-search )
2018-04-17 01:49:52 +08:00
* **Sorting**
2018-06-22 20:38:18 +08:00
* `B` [Bubble Sort ](src/algorithms/sorting/bubble-sort )
* `B` [Selection Sort ](src/algorithms/sorting/selection-sort )
2018-06-22 20:41:35 +08:00
* `B` [Insertion Sort ](src/algorithms/sorting/insertion-sort )
* `B` [Heap Sort ](src/algorithms/sorting/heap-sort )
* `B` [Merge Sort ](src/algorithms/sorting/merge-sort )
* `B` [Quicksort ](src/algorithms/sorting/quick-sort ) - in-place and non-in-place implementations
* `B` [Shellsort ](src/algorithms/sorting/shell-sort )
* `A` [Counting Sort ](src/algorithms/sorting/counting-sort )
* `A` [Radix Sort ](src/algorithms/sorting/radix-sort )
2018-06-02 14:15:08 +08:00
* **Trees**
2018-06-22 20:41:35 +08:00
* `B` [Depth-First Search ](src/algorithms/tree/depth-first-search ) (DFS)
* `B` [Breadth-First Search ](src/algorithms/tree/breadth-first-search ) (BFS)
2018-06-02 14:15:08 +08:00
* **Graphs**
2018-06-22 20:41:35 +08:00
* `B` [Depth-First Search ](src/algorithms/graph/depth-first-search ) (DFS)
* `B` [Breadth-First Search ](src/algorithms/graph/breadth-first-search ) (BFS)
* `A` [Dijkstra Algorithm ](src/algorithms/graph/dijkstra ) - finding shortest path to all graph vertices
* `A` [Bellman-Ford Algorithm ](src/algorithms/graph/bellman-ford ) - finding shortest path to all graph vertices
* `A` [Detect Cycle ](src/algorithms/graph/detect-cycle ) - for both directed and undirected graphs (DFS and Disjoint Set based versions)
* `A` [Prim’ s Algorithm ](src/algorithms/graph/prim ) - finding Minimum Spanning Tree (MST) for weighted undirected graph
* `B` [Kruskal’ s Algorithm ](src/algorithms/graph/kruskal ) - finding Minimum Spanning Tree (MST) for weighted undirected graph
* `A` [Topological Sorting ](src/algorithms/graph/topological-sorting ) - DFS method
* `A` [Articulation Points ](src/algorithms/graph/articulation-points ) - Tarjan's algorithm (DFS based)
* `A` [Bridges ](src/algorithms/graph/bridges ) - DFS based algorithm
* `A` [Eulerian Path and Eulerian Circuit ](src/algorithms/graph/eulerian-path ) - Fleury's algorithm - Visit every edge exactly once
* `A` [Hamiltonian Cycle ](src/algorithms/graph/hamiltonian-cycle ) - Visit every vertex exactly once
* `A` [Strongly Connected Components ](src/algorithms/graph/strongly-connected-components ) - Kosaraju's algorithm
* `A` [Travelling Salesman Problem ](src/algorithms/graph/travelling-salesman ) - shortest possible route that visits each city and returns to the origin city
2018-04-17 01:49:52 +08:00
* **Uncategorized**
2018-06-22 20:41:35 +08:00
* `B` [Tower of Hanoi ](src/algorithms/uncategorized/hanoi-tower )
* `A` [N-Queens Problem ](src/algorithms/uncategorized/n-queens )
* `A` [Knight's Tour ](src/algorithms/uncategorized/knight-tour )
2018-06-12 19:28:19 +08:00
2018-04-26 12:39:08 +08:00
### Algorithms by Paradigm
2018-06-12 19:28:19 +08:00
An algorithmic paradigm is a generic method or approach which underlies the design of a class
of algorithms. It is an abstraction higher than the notion of an algorithm, just as an
2018-05-20 03:50:46 +08:00
algorithm is an abstraction higher than a computer program.
2018-05-20 04:05:20 +08:00
* **Brute Force** - look at all the possibilities and selects the best solution
2018-06-22 20:41:35 +08:00
* `A` [Maximum Subarray ](src/algorithms/sets/maximum-subarray )
* `A` [Travelling Salesman Problem ](src/algorithms/graph/travelling-salesman ) - shortest possible route that visits each city and returns to the origin city
2018-05-20 04:05:20 +08:00
* **Greedy** - choose the best option at the current time, without any consideration for the future
2018-06-22 20:41:35 +08:00
* `A` [Unbound Knapsack Problem ](src/algorithms/sets/knapsack-problem )
* `A` [Dijkstra Algorithm ](src/algorithms/graph/dijkstra ) - finding shortest path to all graph vertices
* `A` [Prim’ s Algorithm ](src/algorithms/graph/prim ) - finding Minimum Spanning Tree (MST) for weighted undirected graph
* `A` [Kruskal’ s Algorithm ](src/algorithms/graph/kruskal ) - finding Minimum Spanning Tree (MST) for weighted undirected graph
2018-05-20 04:05:20 +08:00
* **Divide and Conquer** - divide the problem into smaller parts and then solve those parts
2018-06-22 20:41:35 +08:00
* `B` [Binary Search ](src/algorithms/search/binary-search )
* `B` [Tower of Hanoi ](src/algorithms/uncategorized/hanoi-tower )
* `B` [Euclidean Algorithm ](src/algorithms/math/euclidean-algorithm ) - calculate the Greatest Common Divisor (GCD)
* `A` [Permutations ](src/algorithms/sets/permutations ) (with and without repetitions)
* `A` [Combinations ](src/algorithms/sets/combinations ) (with and without repetitions)
* `B` [Merge Sort ](src/algorithms/sorting/merge-sort )
* `B` [Quicksort ](src/algorithms/sorting/quick-sort )
* `B` [Tree Depth-First Search ](src/algorithms/tree/depth-first-search ) (DFS)
* `B` [Graph Depth-First Search ](src/algorithms/graph/depth-first-search ) (DFS)
2018-06-02 14:09:52 +08:00
* **Dynamic Programming** - build up a solution using previously found sub-solutions
2018-06-22 20:41:35 +08:00
* `B` [Fibonacci Number ](src/algorithms/math/fibonacci )
* `A` [Levenshtein Distance ](src/algorithms/string/levenshtein-distance ) - minimum edit distance between two sequences
* `A` [Longest Common Subsequence ](src/algorithms/sets/longest-common-subsequence ) (LCS)
* `A` [Longest Common Substring ](src/algorithms/string/longest-common-substring )
* `A` [Longest Increasing subsequence ](src/algorithms/sets/longest-increasing-subsequence )
* `A` [Shortest Common Supersequence ](src/algorithms/sets/shortest-common-supersequence )
* `A` [0/1 Knapsack Problem ](src/algorithms/sets/knapsack-problem )
* `A` [Integer Partition ](src/algorithms/math/integer-partition )
* `A` [Maximum Subarray ](src/algorithms/sets/maximum-subarray )
* `A` [Bellman-Ford Algorithm ](src/algorithms/graph/bellman-ford ) - finding shortest path to all graph vertices
2018-06-26 01:02:24 +08:00
* `A` [Regular Expression Matching ](src/algorithms/string/regular-expression-matching )
2018-06-03 03:43:30 +08:00
* **Backtracking** - similarly to brute force, try to generate all possible solutions, but each time you generate next solution you test
2018-06-12 19:28:19 +08:00
if it satisfies all conditions, and only then continue generating subsequent solutions. Otherwise, backtrack, and go on a
2018-06-03 03:43:30 +08:00
different path of finding a solution. Normally the DFS traversal of state-space is being used.
2018-06-22 20:41:35 +08:00
* `A` [Hamiltonian Cycle ](src/algorithms/graph/hamiltonian-cycle ) - Visit every vertex exactly once
* `A` [N-Queens Problem ](src/algorithms/uncategorized/n-queens )
* `A` [Knight's Tour ](src/algorithms/uncategorized/knight-tour )
2018-06-30 15:19:14 +08:00
* `A` [Combination Sum ](src/algorithms/sets/combination-sum ) - find all combinations that form specific sum
2018-06-03 03:43:30 +08:00
* **Branch & Bound** - remember the lowest-cost solution found at each stage of the backtracking
search, and use the cost of the lowest-cost solution found so far as a lower bound on the cost of
a least-cost solution to the problem, in order to discard partial solutions with costs larger than the
lowest-cost solution found so far. Normally BFS traversal in combination with DFS traversal of state-space
tree is being used.
2018-04-13 11:25:06 +08:00
2018-05-16 12:54:06 +08:00
## How to use this repository
**Install all dependencies**
```
2018-05-18 03:03:10 +08:00
npm install
2018-05-16 12:54:06 +08:00
```
2018-03-27 19:43:15 +08:00
**Run all tests**
```
npm test
```
**Run tests by name**
```
npm test -- -t 'LinkedList'
```
2018-04-12 13:46:35 +08:00
2018-05-18 11:22:37 +08:00
**Playground**
2018-04-12 13:46:35 +08:00
You may play with data-structures and algorithms in `./src/playground/playground.js` file and write
tests for it in `./src/playground/__test__/playground.test.js` .
Then just simply run the following command to test if your playground code works as expected:
```
npm test -- -t 'playground'
```
2018-05-16 12:54:06 +08:00
## Useful Information
2018-04-12 13:46:35 +08:00
2018-05-16 12:54:06 +08:00
### References
2018-04-12 13:46:35 +08:00
2018-05-16 12:54:06 +08:00
[▶ Data Structures and Algorithms on YouTube ](https://www.youtube.com/playlist?list=PLLXdhg_r2hKA7DPDsunoDZ-Z769jWn4R8 )
2018-04-12 13:49:34 +08:00
2018-04-12 13:46:35 +08:00
### Big O Notation
2018-06-12 19:28:19 +08:00
2018-04-12 13:46:35 +08:00
Order of growth of algorithms specified in Big O notation.
2018-06-12 19:28:19 +08:00
![Big O graphs ](./assets/big-o-graph.png )
2018-04-15 11:57:34 +08:00
2018-04-12 13:46:35 +08:00
Source: [Big O Cheat Sheet ](http://bigocheatsheet.com/ ).
2018-06-12 19:28:19 +08:00
2018-04-12 13:46:35 +08:00
Below is the list of some of the most used Big O notations and their performance comparisons against different sizes of the input data.
| Big O Notation | Computations for 10 elements | Computations for 100 elements | Computations for 1000 elements |
| -------------- | ---------------------------- | ----------------------------- | ------------------------------- |
| **O(1)** | 1 | 1 | 1 |
| **O(log N)** | 3 | 6 | 9 |
| **O(N)** | 10 | 100 | 1000 |
2018-05-24 06:38:02 +08:00
| **O(N log N)** | 30 | 600 | 9000 |
2018-04-12 13:46:35 +08:00
| **O(N^2)** | 100 | 10000 | 1000000 |
| **O(2^N)** | 1024 | 1.26e+29 | 1.07e+301 |
| **O(N!)** | 3628800 | 9.3e+157 | 4.02e+2567 |
2018-04-15 11:56:15 +08:00
### Data Structure Operations Complexity
2018-06-12 19:28:19 +08:00
2018-06-22 20:15:54 +08:00
| Data Structure | Access | Search | Insertion | Deletion | Comments |
| ----------------------- | :-------: | :-------: | :-------: | :-------: | :-------- |
| **Array** | 1 | n | n | n | |
| **Stack** | n | n | 1 | 1 | |
| **Queue** | n | n | 1 | 1 | |
| **Linked List** | n | n | 1 | 1 | |
| **Hash Table** | - | n | n | n | In case of perfect hash function costs would be O(1) |
| **Binary Search Tree** | n | n | n | n | In case of balanced tree costs would be O(log(n)) |
| **B-Tree** | log(n) | log(n) | log(n) | log(n) | |
| **Red-Black Tree** | log(n) | log(n) | log(n) | log(n) | |
| **AVL Tree** | log(n) | log(n) | log(n) | log(n) | |
2018-07-01 01:49:18 +08:00
| **Bloom Filter** | - | 1 | 1 | - | False positives are possible while searching |
2018-04-13 11:11:39 +08:00
2018-04-13 11:38:38 +08:00
### Array Sorting Algorithms Complexity
2018-04-13 11:11:39 +08:00
2018-06-22 20:19:42 +08:00
| Name | Best | Average | Worst | Memory | Stable | Comments |
| --------------------- | :-------------: | :-----------------: | :-----------------: | :-------: | :-------: | :-------- |
| **Bubble sort** | n | n< sup > 2</ sup > | n< sup > 2</ sup > | 1 | Yes | |
| **Insertion sort** | n | n< sup > 2</ sup > | n< sup > 2</ sup > | 1 | Yes | |
| **Selection sort** | n< sup > 2</ sup > | n< sup > 2</ sup > | n< sup > 2</ sup > | 1 | No | |
2018-06-22 20:24:25 +08:00
| **Heap sort** | n log(n) | n log(n) | n log(n) | 1 | No | |
| **Merge sort** | n log(n) | n log(n) | n log(n) | n | Yes | |
| **Quick sort** | n log(n) | n log(n) | n< sup > 2</ sup > | log(n) | No | |
| **Shell sort** | n log(n) | depends on gap sequence | n (log(n))< sup > 2</ sup > | 1 | No | |
2018-06-22 20:19:42 +08:00
| **Counting sort** | n + r | n + r | n + r | n + r | Yes | r - biggest number in array |
| **Radix sort** | n * k | n * k | n * k | n + k | Yes | k - length of longest key |