mirror of
https://github.moeyy.xyz/https://github.com/trekhleb/javascript-algorithms.git
synced 2024-12-26 23:21:18 +08:00
Code styling fixes for Sieve of Eratosthenes.
This commit is contained in:
parent
943f83492a
commit
91d4714d19
@ -49,6 +49,7 @@ a set of rules that precisely define a sequence of operations.
|
|||||||
* [Euclidean Algorithm](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/euclidean-algorithm) - calculate the Greatest Common Divisor (GCD)
|
* [Euclidean Algorithm](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/euclidean-algorithm) - calculate the Greatest Common Divisor (GCD)
|
||||||
* [Least Common Multiple](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/least-common-multiple) (LCM)
|
* [Least Common Multiple](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/least-common-multiple) (LCM)
|
||||||
* [Integer Partition](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/integer-partition)
|
* [Integer Partition](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/integer-partition)
|
||||||
|
* [Sieve of Eratosthenes](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/math/sieve-of-eratosthenes) - finding all prime numbers up to any given limit
|
||||||
* **Sets**
|
* **Sets**
|
||||||
* [Cartesian Product](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/cartesian-product) - product of multiple sets
|
* [Cartesian Product](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/cartesian-product) - product of multiple sets
|
||||||
* [Power Set](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/power-set) - all subsets of a set
|
* [Power Set](https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms/sets/power-set) - all subsets of a set
|
||||||
|
@ -6,15 +6,18 @@ It is attributed to Eratosthenes of Cyrene, an ancient Greek mathematician.
|
|||||||
|
|
||||||
## How it works
|
## How it works
|
||||||
|
|
||||||
1. Create a boolean array of `n+1` positions (to represent the numbers `0` through `n`)
|
1. Create a boolean array of `n + 1` positions (to represent the numbers `0` through `n`)
|
||||||
2. Set positions `0` and `1` to `false`, and the rest to `true`
|
2. Set positions `0` and `1` to `false`, and the rest to `true`
|
||||||
3. Start at position `p = 2` (the first prime number)
|
3. Start at position `p = 2` (the first prime number)
|
||||||
4. Mark as `false` all the multiples of `p` (that is, positions `2*p`, `3*p`, `4*p`... until you reach the end of the array)
|
4. Mark as `false` all the multiples of `p` (that is, positions `2 * p`, `3 * p`, `4 * p`... until you reach the end of the array)
|
||||||
5. Find the first position greater than `p` that is `true` in the array. If there is no such position, stop. Otherwise, let `p` equal this new number (which is the next prime), and repeat from step 4
|
5. Find the first position greater than `p` that is `true` in the array. If there is no such position, stop. Otherwise, let `p` equal this new number (which is the next prime), and repeat from step 4
|
||||||
|
|
||||||
When the algorithm terminates, the numbers remaining `true` in the array are all the primes below `n`.
|
When the algorithm terminates, the numbers remaining `true` in the array are all
|
||||||
|
the primes below `n`.
|
||||||
|
|
||||||
An improvement of this algorithm is, in step 4, start marking multiples of `p` from `p*p`, and not from `2*p`. The reason why this works is because, at that point, smaller multiples of `p` will have already been marked `false`.
|
An improvement of this algorithm is, in step 4, start marking multiples
|
||||||
|
of `p` from `p * p`, and not from `2 * p`. The reason why this works is because,
|
||||||
|
at that point, smaller multiples of `p` will have already been marked `false`.
|
||||||
|
|
||||||
## Example
|
## Example
|
||||||
|
|
||||||
@ -26,4 +29,4 @@ The algorithm has a complexity of `O(n log(log n))`.
|
|||||||
|
|
||||||
## References
|
## References
|
||||||
|
|
||||||
[Wikipedia](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
|
- [Wikipedia](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
import sieveOfEratosthenes from '../sieveOfEratosthenes';
|
import sieveOfEratosthenes from '../sieveOfEratosthenes';
|
||||||
|
|
||||||
describe('factorial', () => {
|
describe('sieveOfEratosthenes', () => {
|
||||||
it('should find all primes less than or equal to n', () => {
|
it('should find all primes less than or equal to n', () => {
|
||||||
expect(sieveOfEratosthenes(5)).toEqual([2, 3, 5]);
|
expect(sieveOfEratosthenes(5)).toEqual([2, 3, 5]);
|
||||||
expect(sieveOfEratosthenes(10)).toEqual([2, 3, 5, 7]);
|
expect(sieveOfEratosthenes(10)).toEqual([2, 3, 5, 7]);
|
||||||
|
@ -1,25 +1,33 @@
|
|||||||
/**
|
/**
|
||||||
* @param {number} n
|
* @param {number} maxNumber
|
||||||
* @return {number[]}
|
* @return {number[]}
|
||||||
*/
|
*/
|
||||||
export default function sieveOfEratosthenes(n) {
|
export default function sieveOfEratosthenes(maxNumber) {
|
||||||
const isPrime = new Array(n + 1).fill(true);
|
const isPrime = new Array(maxNumber + 1).fill(true);
|
||||||
isPrime[0] = false;
|
isPrime[0] = false;
|
||||||
isPrime[1] = false;
|
isPrime[1] = false;
|
||||||
|
|
||||||
const primes = [];
|
const primes = [];
|
||||||
|
|
||||||
for (let i = 2; i <= n; i += 1) {
|
for (let number = 2; number <= maxNumber; number += 1) {
|
||||||
if (isPrime[i] === true) {
|
if (isPrime[number] === true) {
|
||||||
primes.push(i);
|
primes.push(number);
|
||||||
|
|
||||||
// Warning: When working with really big numbers, the following line may cause overflow
|
/*
|
||||||
// In that case, it can be changed to:
|
* Optimisation.
|
||||||
// let j = 2 * i;
|
* Start marking multiples of `p` from `p * p`, and not from `2 * p`.
|
||||||
let j = i * i;
|
* The reason why this works is because, at that point, smaller multiples
|
||||||
|
* of `p` will have already been marked `false`.
|
||||||
|
*
|
||||||
|
* Warning: When working with really big numbers, the following line may cause overflow
|
||||||
|
* In that case, it can be changed to:
|
||||||
|
* let nextNumber = 2 * number;
|
||||||
|
*/
|
||||||
|
let nextNumber = number * number;
|
||||||
|
|
||||||
while (j <= n) {
|
while (nextNumber <= maxNumber) {
|
||||||
isPrime[j] = false;
|
isPrime[nextNumber] = false;
|
||||||
j += i;
|
nextNumber += number;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user